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FOREWORD

The present AGARDograph was sponsored by the Computational Fluid Dynamics (CFD) Committee of the Fluid
Dynamics Panel recognizing the important role that mesh generation plays in Euler or Navier/Stokes finite difference
calculations currently of interest. It has been amply demonstrated that the viability of a numerical solution depends directly on
the quality of the mesh as measured by its spacing and orthogonality. Of particular interest is the mesh generation for complex
configurations, such as advanced fighters or logistic transports, where a multiblock mesh, for example. is necessary.

There exist numerous reports and books on the various methods of mesh generauon giving examples of interest. The
present AGARDograph therefore will be directed towards presenting detailed case histories of mesh generation over complex
configurations to servc as a guide to users. In particular the emphasis will be on the difficulties encountered. and how they were
resolved.

Dr J.Steger, Senior Staff Scientist, at the NASA Ames Research Center and Dr J. Thompson, Professor of Aerospace
Engineering at the Mississippi State University, served as the principal authors contributing the Background and Concluding
Chapters. Both authors have contributed significantly to the mesh generation research and development. Dr Steger was
responsible for the case histories from North America, while Professor Thompson coordinated the contributions from Europe.

The CFD Committee and the Editor wish to express their appreciation to Dr Steger, Professor Thompson and the
contributors and their organizations, who generously shared their valuable experiences.

H.Yoshihara
Editor

AVANT-PROPOS

Le présent AGARDograph a été patronné par le Comite “Calculs de Dynamique des Fluides™ (CDF) du Groupe
“Dynamique des Fluides™, en reconnaissant le role important que la génération de mailles joue dans les calculs des différences
finies d'Euler ou Navier/Stokes qui présentent actuellement un grand intérét. 1l a été amplement démontre que la viabilité
d’une solution numérique dépend directement de la qualité de la maille mesurée par son espacement et son orthogonalité. La
génération de mailles est d'un intérét tout particulier pour des configurations complexes telles que les avions de chasse
modernes ou les avions de transport logistiques, dan- lesquelles une maille multibloc, par exemple, est nécessaire.

1l existe de nombreux rapports et de nombreux livres sur les différents modes de génération de mailles qui donnent des
exemples intéressants, C'est pourquoi le présent AGARDograph aura pour objet de présenter des études de cas de génération
de mailles sur des configurations complexes destinées a servir de guide aux utilisateurs. L'accent sera mis en particulier sur les
difficultés rencontrées et sur la fagon dont elles ont été résolues.

Le Dr J.Steger. Maitre de Recherches au Centre de Recherche de la NASA-Ames, et le Dr ). Thompson, Professeur de
Techniques Aérospatiales a I'Université de I'Etat du Mississippi sont les principaux auteurs qui ont rédigé les chapitres
“Données de base™ et “Conclusion™. Ces deux auteurs ont contribué considérablement a la recherche et au développement de
la génération de mailles. Le Dr Steger était responsable des études de cas provenant ' Amérique du Nord, tandis que le
Professcur Thompson assurait la coordination des contributions européennes.

Le Comité chargs de la DFC et le Rédacteur en Chef tiennent a exprimer leurs remerciements au Dr Steger, au Professeur

Thompson, ainsi qu'aux autres collaborateurs et a leurs organismes qui ont généreusement apporté une part de leur précieuse
expérience.

H.Yoshihara
Rédacteur en Chef

it




CONTENTS

FOREWORD

1. INTENT

2. INTRODUCTION

3. REVIEW

3.1
3.2
33
34
3.5
3.6
3.7
38
39
3.10
kN)!

GRID TYPES

GRID STRUCTURES
COMPOSITE BLOCK GRIDS
SURFACE GRIDS
ORTHOGONALITY

GRID GENERATION SCHEMES
ALGEBRAIC GRID GENERATION
ELLIPTIC GRID GENERATION
UNSTRUCTURED MESHES
ADAPTIVE GRID SCHEMES
REFERENCES

4. CONTRIBUTIONS

4.1
4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

4.10

4.12

4.13

SOLICITATION AND OVERVIEW

LESSONS LEARNED IN THE MESH GENERATION FOR PN/S CALCULATIONS

by H.Yoshihara

THREE-DIMENSIONAL ELLIPTIC GRID GENERATION FOR AN F-16

by R.L.Sorenson

COMPONENT ADAPTIVE GRID GENERATION FOR AIRCRAFT CONFIGURATIONS
by N.P.Weatherill and J.A.Shaw

GENERATION OF MULTIPLE BLOCK GRIDS FOR ARBITRARY 3D GEOMETRIES
by J.P.Steinbrenner, S.L.Karman, Jr., and J.R.Chawner

GRID GENERATION ON AND ABOUT A CRANKED-WING FIGHTER AIRCRAFT
CONFIGURATION

by R.E.Smith, J.L.Pitts, L-E.Eriksson and M.R. Wiese

GRID GENERATION FOR AN ADVANCED FIGHTER AIRCRAFT

by A.Eberle and W,Schwarz

ALGEBRAIC GRID GENERATION FOR FIGHTER TYPE AIRCRAFT

by J.Steinhoff

COMPOSITE GRID GENERATION FOR AIRCRAFT CONFIGURATIONS WITH THE
EAGLE CODE

by J.F.Thompson and L.E.Lijewski

ANALYTICAL SURFACES AND GRIDS

by H.Sobieczky

MESH GENERATION FOR INDUSTRIAL APPLICATION OF EULER AND NAVIER STOKES
SOLVERS

by v¥.Fritz, W.Haase and W.Seibert

EXPERIENCE WITH THREE-DIMENSIONAL COMPOSITE GRIDS

by J.A.Benek, T.L.Donegan and N.E.Suhs

GRID GENERATION AROUND TRANSPORT AIRCRAFT CONFIGURATIONS USING
A MULTI-BLOCK STRUCTURED COMPUTATIONAL DOMAIN

by R.Radespiel

Page

- 7 B R AN

23
29

40

65

77

85

96

106

124

139



-

1. INTENT

Over the last two decades efficient difference schemes for solving the nonlinear govern-
ing equations of aerodynamics have evolved for simulating the flow about relatively simple
configurations. For the most part these procedures use structured body-conforming curvilinear
grids, and are generally being extended to the treatment of more complex shapes by the use of
a composite grid approach. However, the development of suitable grid schemes is still an on-
going process, and it 1s npot clear that routine computational fluid dynamics (CFD) solution
procedures have gvolved, especlally for high Reynolds number viscous flow simulation.

For this reason, this AGARDograph was initiated as an attempt to survey some of the capa-
bilities of the CFD community for griding complex three-dimensional configurations. The in-
tent of this AGARDograph is to provide some insight as to the present state of grid generation
for aircraft configurations in order to help assess whether this task presents a long term
stumbling block to routine use of CFD in aerodynamic applications. At the heart of this
AGARDograph are solicited individual contributions describing experience {n griding complex
configurations for flow simulation.

2. INTRODUCTION

Fluid mechanics is described by nonlinear equations which cannot generally be solved ana-
lytically, but which have been solved using various approximate methods including expansion
anc¢ perturbation me:thods, sundry particle and vortex tracing methods, collocatlon and integral
methods, and finite difference, finite volume and finite element methods. Generally the fi-
nite difference, finite volume and finite element discretization methods have been the most
successful, but to use them it {s necessary to discretize the fleld using a grid or mesh. The
mesh can be structured or unstructured, but it must be generated under some of the various
constraints described below, which can often be difficult to satisfy completely.

The generated mesh must be sufficiently dense that the numerical approximation is an ac~
curate one, but it cannot be so dense that the solution is fmpractical to obtain. Generally
the grid spacing should be smoothly and sufficiently refined to resolve changes in the gradi-
ents of the solution. If the grid {s also body conforming and curvilinear, the application of
boundary conditions is usually simplified. Body-conforming curvilinear grids may also allow
the use of varjous approximate equations such as the boundary-layer equations. The grid
should also be constructed with computational efficlency in mind, Various sclution algorithms
are often highly degraded on grids that are too skewed, too high in aspect ratic, or poorly
organized. The accuracy of a numerical approximation can also be impaired if a grid changes
discontinuously or is too skewed. Various vectorized computers often require well organized
data, and memory requirements camn grow to impractical limits unless the data is organized.
Finally, the choice of a grid should not lead to overly complex computer codes.

The task of grid generation is not straightforward, given the algorithm and computational
constraints imposed by current computers. It is necessary to adapt the grid to the problem at
hand to achieve the best efficlency and accuracy. As a result the problem of grid generation
can sti{ll be as much an art form as i{* is a scientific discipline.

This AGARDograph begins with a brief review of some of the techniques that are avallable
for generating body-conforming curvilinear grids. 1In order to assess capabilities in grid
generation, colleagues at selected institutions were solicited to describe their experiences
and difficulties in grid generation of complex configuraticns. The intent here was not to de-
scribe the very latest {n grid generation procedures, but to solicit honest comments about
what are the difficulties in generating practical grids and what steps are taken to meet these
difficulties. These experiences, which comprise the heart of this AGARDograph, are presented
as case histories in Section i.

3. BREVIEW

A cursory review of some of the techniques of numerical grid generalion is presented be-
low. More information on numerical grid generation and its application to the numerical solu-
tion of partial differential equations is given in a recent text on the subject (Ref. 1).
Several surveys of the field have also been given (Refs. 2-5), and four conference proceedings
dedicated to the area have appeared (Refs. 6-9), The first of these proceedings also contains
a number of expository papers and other sources on the subject.

3.1 Grid Types

In the figure below are shown three basic grid treatments for meshing a simple body--a
rectangular or Cartesian-like grid, a structured curvilinear body-conforming grid, and an un~
structured triangularized grid.



{b)

{a)
(e}

Each grid type has advantages and disadvantages. The rectangular grid {s well-ordered, triv-
ial to generate, readily allows accuratée interior difference approximations, and the represen-
tation of a difference approximation requires the minimum work per step. However, boundary
representation requires special logic, 13 generally of poor accuracy, and the grid does not
clurter to afficiently resolve viscous boundary layers on curvad boundaries. The curvilinear
body-conforming mesh is also well-ordered, allows higher order difference approximatjons, per-
mits simple and accurate boundary difference approximations, and can be clustered into gradi-
ent regions. It is especlally well sulted for viscous boundary layer approximation. However,
the governing equations are more compleX to difference on a curvilinear grid (although body-
conforming grids often permit use of additional approximations), and grid generation, while
not difficult for simple bodies, Is no longer trivial. The unstructured triangularized mesh
has good grid concentration (i.e,, triangles can be readily deleted in smooth gradient re-
gions) and the shape of the boundary curve is readily conformed to. However, such a mesh s
poorly ordered and is therefore less amenable to the use of certain algorithms (e.g. ADI) and
vectorized computers. Mesh generation is also not trivial. Moreover, triangular meshes have
not been used for resolving high Reynolds number viscous boundary layers of practical inter-

est.

For a simple body shape, the use of a single body-conforming curvilinear mesh leads to
the most efficlent solution procedure. As a result most current aerodynamic solution codes
employ a body-ccnforming structured, curvilinear grid. Considerable effort is now underway to
extend these procedures for complex three-dimensjonal configurations, generally by using com®
posite grid techniques.

3.2 Grid Structures

A curvilinear structured grid can be represented by a rectangular array of position vec-
tors:

Bige (17102, 05 J=1,2,72,05 k=1,2,-K),

where the indices {,j,k are identified with the three curvilinear coordinates. The position
vector r is a three-vector giving the values of the x,y,z Cartesian coordinates of a grid
point. Since all {ncrements in the curvilinear coordinates cancel out of the transformation
relations for derivative operators, there is no loss of generality in defining the discreti-
zation to be on integer values of these coordinates.

Fundamental to a body-conforming curvilinear coordinate system I3 the coincidence of some
coordinate surface with each segment of boundary of the physical region. This is accom-
plished by placing a two-dimensional array of points on a physical boundary segment and set-
ting these values in the array of position vectors with one inder conctant, e.g. in Ciyk with
{ from 1 to I and j from 1 to J. The curvilinear coordinate k 1s thus constant on this"physi-
cal boundary segment. With values set on the sides of the rectangular array of position vec-
tora in this manner, the generation of the grid {s accomplished by determining the values of
£y g in the interior of the rectangular array from the specified boundary values on ita sides,
e.g. by interpolation or a partial differential equation (PDE) solution. The set of values
Ty gn then forms the nodes of a curvilinear coordinate system filling the physical region. A
pA}sical region bounded by six generally curved sides can thus be considered to have been
transformed to a rectangular computaticnal region on which the curvilinear coordinates are the
independent variables.
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3.3 Composite Block Grids

Although in principle it is possible to establish a correspondence between any physical
region and a single empty rectangular block for general three-dimensional configurations, the
resulting grid is likely to be too skewed and irregular to be usable when the boundary geome-
try 1s complicated. A better approach with complicated physical boundaries is to segment the
physical region into subregions bounded by 3six curved sides (four in 2D). These subregions
may or may not overlap (:.f., Rer. 10). Each sub~grid 1s transformed to a rectangular block in
the computational reglon with 1{ts own curvilinear coordinate system irrespective of that in

[aaen, D%D
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This then allows both the grid generation and numerical solutions on the grid to cperate
in a rectangular computational region regardless of the shape or complexity of the full physi-
cal region. The full region is treated by performing the solution operatfon in all of the
rectangular computational blocks. With the composite framework, CFD solution procedures writ-
ten to operate on rectangular regions can be incorporated into a code for general configura-
tions in a straightfcrward manner, since the code only needs to treat a rectangular block. The
entire physical fleld then can be treated Iin a loop over all the blocks. Such a composite
structure has been incorporated in several recent grid codes (e.g. Refs. 11-20 and the papers
included in Section 4) of various degrees of generality (cf. also Refs. 9 and 6).

The curved surfaces bounding the sub-regions in the physical region form internal inter-
faces across which information must be transferred, f.e., from the sides of one rectangular
computational block to those of another. Regardless of whether the composite grid 1s formed
using contiguous sub-~grids (i.e. a blocked grid) or from overset (or overlapped) grids, these
interface boundaries occur in palra. For a blocked grid an Interface on one block is paired
with another on the same, or different, block, since both correspond to the same physical sur-
face. Grid lines at the interfaces may meet with complete continuity, with or without slope
continui{ty, or may not meet at all, The codes of Refs. 12, 14, 15, 17, 18, and 19 provide
complete continuity, while those of Refs. 16 and 20 are based on slope continuity.

3.4 Surface Grids

The specification of the boundary point distribution i{a a two-dimensional grid problem in
its own right, which can also be done either by i{nterpolation or a PDE solution. In general,
this is a 2D boundary value problem on a curved surface, i.e., the determination of the loca-
tions of points on the surface from specified distributions of points on the four edges of the
suyrface.

N
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This 1s best approached through the use of surface parametric coordinates, whereby the surface
is rirst defined by a 2D array of points, Cpn+ €.8. a set of cross-sections.

w




The surface is then splined, and the spline coordinates (u,v; surface parametric coordinates)
are then made the dependent variables for the interpolation or PDE generation system. The gen-
eration of the surface grid can then be accomplished by first specifying the boundary points
in the array £yy on the four edges of the surface grid; converting these Cartesian coordinate
values to spline coordinate values (u ) on the edges; then determining the interior val-
ues {n the arrays u and ¥y from th eéie values by interpolation or PDE solution; and fi-
nally converting these spline” values to Cartesian coordinates Tyy-

The specification of the 1D point distributions on the edges can be done using certain
distribution functions based on hyperbolic functions which have been shown to give spacing
distributions that are optimum in the sense of controlling the truncation error induced by
spacing changes (cf. Refs. 1,21,22).

After the points on the physical boundary segments have been set on the sides of the rec-
tangular array, the grid is generated throughout the physical region by determirig the inte-
rior values in the arrays from the values set on the sides. This amounts to a boundary value
problem whick can be approached either through interpolation from the boundary values, or
through the numerical solution of a system of partial differential equations with r as the
dependent varfable :nd the set boundary v>'es 22 boundary comditéinnme

3.5 Crthogonality

Coordinate systems that are orthogonal, or at least nearly orthogonal, near the boundary
make the application of boundary conditions more straightforward. Although strict orthogo-
nality is not necessary, the accuracy deteriorates if the departure from orthogonality is too
large. The implementation of algebralc turbulence models is more reliable with near-ortho-
gonality at the bounoary, since infarzation .cn loea’ boundary «svwals 42 Loua::y Cugulitol In
such models. The formulation of boundary-layer equations {s also more straightforward and
unambiguous in such systems. It 13 thus better In general, other considerations being eqi=l,
for grid lines to be nearly normal to boundaries.

3.6 3arid Generation Schemes

The generation procedures for curvilinear grids are of two general types: (1, by numeri-
cal solution of partial differential equations, and (2) construction by algebraic interpola-
tion. In the former, the PDE system may be elliptic, parabolic or hyperbolic. Included in
the elliptic systems are both the conformal and the quasiconformal mappings, the former being
orthogonal. Orthogonal systems do not have to be conformal, and may be generated from hypere
bolic systems as well as from elliptic systems. Some procedures are designed to produce coor-
dinates that are nearly orthogonal. The algebraic procedures include simple normalization of
boundary curves, transfinite interpolation from boundary surfaces, the use of Intermediate
interpolating surfaces, and various other related interpolation techniques.

The relative merits of the various types of grids and generation procedures have been
discussed in the various surveys noted above, as well as in the works cited therein.
Basically, the algebralc generation systems are faster, but the grids generated from partial
differential equations are generally smoother. The hyperbolic and parabolic generation sys-
tems are faster than the elliptic systems, but are more limited in the configurations that can
be treated. The elliptic systems are the most generally applicable with complicated boundary
configurations, but transfinite interpolation is also effective in the composite grid frame-
work.,
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3.7 Algebraic Grid Generation

Algebraic grid generation consists of the determination of the interjor values in the
rectangular array Ty from the set values on the sldes by interpolation. A number of dif-
ferent forams of 1ntef86{ation are discussed in Ref. 1. Such generation systems are surveyed in
Refs. 2,3 and 5 as well as in Refs. 23 and 24, Here only one widely used procedure, trans-
finite interpolation, will be briefly described.

A generally effective grid generatlon procedure {3 provided by the transfinite interpola-
tion technique (Refs. 25,26), in which all of the boundary values are matched by the {nterpo-
lation function. Transfinite interpolation in multiple dimensions can be built up of
one-dimensional interpolations as follows (cf. Ref. | for more detalls).

One-dimensional interpolation between two boundaries on which the index i is constant is
given by

Tk Tifr,ge O T IO gk m

where f; varies monotonically from f =0 to fy=1 for i=1,2,...I. Analogous forms apply for
interpolation in the } and k direct{ons. Certain distribution functions based on hyperbolic
functions have been shown to be optimal in the sense of reduced truncation error {cf, Refs.
21,22).

If the interpolation operation given by Eq. (1) is defined as the "projector® P(l), l.e.,

(1) -
EiJk - P = rICIJk + (1 f!)g1jk (2)

then two-dimensional transfinite {nterpolation on a surface on which k is constant is accom-
plished by the projector

(1) 3y _ P(I)P(J)

Ty T P + P (3)
where
(1) () -
PR syt f U 7 8yInyyy
+ (1 - rl)gJE1Jk AL FPAC A gJ)[11k )
and 84 varies monotonically from g,=0 to g;=1 for j=1,2,~-,J.
-
O/
Analogous forms apply on surfaces on which i or j are constant.
The three-dimensional form then is given by the projector
Ty - P(1) . P(J) . P(k) - PH)P(J) - P(J)P(k) ~ P(k)P(l)
+ pl1ip(3) 00 %)

where




(1) ,(3) (k) -
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+ (1 - ri)(1 - gJ)(l - h)r (h)

k'~111

Here h, varies monotonically from hy=0 to hy=1 for k=1,2,--,K.

General algebralc grid generation codes have been reported in Refs. '3, 17, and 27.

3.8 Elliptic Grid Generation

Since elliptic parti{al differential sSystems determine a functlion in terms of 1ts values
on the antire closed boundary of a reglon, such a system can be used to generate the interior
values in the array Cjq. from the values set on the sides. The properties of ellip*tic grid
generation systems are dfscussed in Ref. 1. The extremum principles that are erhibited by
some elliptic systems serve to prevent the grid overlap that can occur with algebraic grid
generation in some configurations. Crids generated from elliptic systems also gererally tend
to be smoother than those from algebralc systems. In fact, It can be shown by the calcuius of
variations that a grid generated as the solution of Laplace equations 1s the smoothest pusai-
ble grid. The lines of such a grid tend to concentrate over convex portions of the physical
boundary and to be more widely spaced over concave porticns, however.

Control over the spacing of the grid lines can be exercised by Incorporating non-zero
Lapiacians into the generation system, The most common form at present is the following sys-
tem:

3 3
3 % g™ ¢ 7 gMr e .0 (n
= m_n n -~-_n
m=1 n=1 &g n=1 &

(8)

and the P_ are the "control functions™ which serve to control the spacing and orfentation of
the grid lines in the field. The g™ elements are more conveniently expressed in terms of the
elements of the covariant metric tensor, Bon?

which can be calculated directly. Thus

fici

1

- = - s
g g ‘b1 gugjk> 0y

(m,1,3) cyclie, (n,k,8) cyelic

where g, the square of the Jacoblan, {s given by
g=det |g . | =r (0, xr ) (t0)
i =1 -2 ~
1T el

in th?se relations, © is the Cartesian position vector of a grid point {r = ix + jy * kz), and
the £° (1=1,2,3) are the three curvilinear coordinates,

Negative values of the control function Pn cause grid lines on which £" 15 constant to
tend to move in the direction of decreasing £, "and this feature can be used to concentrate
grid lines near other grid lines and/or points or {n cortain regions in physical space. How-
ever, a more automatic procedure is to determine the control functions so as to reflect the
boundary point spacing into the field. (Laplace equations, l.e., with zero control functions,
tend to produce uniform grids in the field regardless of the concentration of p~iat3 on the
boundary.) This is accomplished as follows (cf. Ref. 1 for details of the development’.




In two dimensions, the projection of Eq. (7} along a coordinate line on which i (i.e. 51)
varies yields the following equation for the control function Py on this line:

Ir
~. 1
&
P]=—S1' R (123
1
The first term here,
r - r
~ 11
. £ & & s
S1 3 13
Je ol
3

contains only derivatives along the line, and hence can be evaluated from the point distribu-
tion on the line, This term is the logarithmic derivative of arc length along the linc. 1In
the last term p, {s the radius of curvature of the line on which £ is constant that crosses
the line on which the control function P1 is to be e -luated. This curvature is given by

n,-r -1
=2 2.2
_____Jiig] (1)

TR 2
el
€

where p, i3 the unit normal to the crossing line. Although |e 1|, the arc length spacing
(S

along the line of evaluation, can be evaluated from the point distributfon on that line, the

radius of curvature requires derivatives off that line. Analogous equations apply for the

evaluation of the control function P2 on a line on which j, i.e., 22. varies.

The arc length contribution, S,, and the arc spacing, |: 1|. of the control function P,
[4
are evaluated on the two edges (j=f and j=J} on which { vartes., The radius of curvature, ¥

is also evaluated on these lines. These evaluations use

(J) 1
Tt 7 T T Neny?

£

(J)

r - - 2r +r
el Tier,g SH IS TN

on the j=J line, with analogous expressions on the j=1 line. The normal, 0y, needed for the
evaluation of p, is

where k [s the unit vector normal to the surface. Similarly, the arc length contribution to
PZ' the radius of curvature 94 and the spacing |: 2| are evaluated on the other two edges (i=?
and i=I). 3
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The control functions in the interior are then evaluated by interpolating the components Sy
[n .||, and p, one-dimensionally in the j-directfon from the two edges on which they have been
(2

evaluated, f.e., the j=1 and j=J lines. Similarly S,, |c 5|, and p, are interpolated in the

1-direction between the i=1 and {=] lines.

Iz
P, =S, v § (15)
24
I[‘Egl
P, = -8, + (16)
2 2 Py

In three dimenstons the arc length contribution, S,, and the arc spacing, |c ,|, are
evaluated on the four sides of the computational block on which i varies, i.e., the sides j=1
and j=J and the sides k=1 and k=K. The radius of curvature, p;, {s evaluated on the two sides
on which i is constant (i=1 and i=I) from the relation

n -r n r
~2 =22 -3 -:3,3
. £78y an

3 3
£ ¢

arc length contribution curvature contribution
for Py for Py
Analogous evaluations are done for 52 and lc 2] on the four sides on which j varles, for S3
4
and l[EBI on the four sides on which k varies, for p, on the two sides on which J is constant,
for 03 on the two on which k {3 constant. Then S1 and Ix: ‘] are {nterpolated two-dimension-
£

ally in the J) and k directiona from the four sides on which | varies using transfinite inter-




polation, and Py is interpolated one-dimensionally in the i direction from the two sides on

wnich i is constant.

Sys IS ')l
2 2
: Sy |!e3|
+ 2 |
s, tr | ey
1y 5‘ ! 3 |
| S.., |r
Syr i3 2' 3 T
. P
f’ f:// 03 2
&2
The control function Py i{s then evaluated from
Ie 1
P, - =S, ¢ S (18)
Py

Analogous interpolations allow the evaluation of the other two functions.

General codes based on such elllptic generation systems appear in Refs. 12, 14-20. The
code of Refs. 16,20 uses an iterative adjustment of control functions to achieve boundary
orthogonality, as can the code of Ref. 17, as follows:

A second-order elliptic generation aystem allows either the point locations on the bound-
ary or the coordinate line slope at the boundary to be specified, but not both. It is possi-
ble, however, to lteratively adjust the control functions in the generation system of the
Poisson type discussed above until, not only a specified line slope, but also the spacing of
the first coordinate surface off the boundary is achieved, with the point locatjons on the
boundary specified (cf. Ref. 16).

In three dimensions the specification of the coordinate line slope at the boundary
requires the specification of two quantities, e.g., the direction cosines of the line with two
tangents to the boundary. The specification of the spacing of the first coordinate surface
off the boundary requires one more quantity, and therefore the three control functions in the
system Eq. (7) are exactly sufficient to allow these three specified quantities to be
achleved, while the one boundary condition allowed by the second-order system provides for the
point locations on the boundary to be specified.

To 1llustrate this development, an iterative procedure can be consatructed for the deter-
mination of the control functions in two dimensions as follows (cf. Ref, 16). Consider the
generation system given by Eq. (7) in two dimensions (with 51 - £, 52 =n, X3 = x, and x5 = y
here). On a boundary segment that is a line of constant n, CE and tEE are known from the
specified boundary point distribution. Also ]c“|. the spacing off this boundary, is speci-
fied, as i3 the condition of orthogonality at the boundary, l.e., Lg * Cp = 0, But specifica-
tion of [cn| - /xﬁ + yﬁ, together with the condition Cg-Cp=XgXp+¥g¥q=0 provides two equations

for the determination of x_ and ¥ in terms of the already known valuea of the Xe and Ye-

n
Therefore Ty is known on the boundary.

Because of the orthogonality at the boundary, Eq. (7) reduces to the following equation
on the boundary:

lrnl2<rn“ «pr) e e ran) -0 (1)
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Dotting r; and r, Into this equation, and again using the condition of orthogonality, yields
the following two equations for the control functions on the boundary:
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All of the quantities in these equations are known on the boundary except g__. {On a boundary

that is a line of constant §, the same equations for the control functions result, but now
with EEE the unknown quantity.

The iterative solution thus proceeds as follows:
(1) Assume values for the control functions on the boundary.
(2} Solve Eq. (7) to generate the grid in the field.
3) Evaluate Cpn o1 n-line boundaries, and Cge ON £-line boundaries, from the result of
Step (2), using one-asided difference representations. Then evaluate the control func-
tions on the boundary from Egs. (20) and (21). Evaluate the control functions in the

field by interpclation from the boundary values.

Steps (2) and (3) are then repeated until convergence.

The analogous procedure for three dimensions s given in Refs. 20, 17, and 1.

3.9 Unstructured Meshes

An alternative to the structured quadralateral meshes that are discussed in this report
are the unstructured meshes composed of triangles {n 2D or tetrahedrons in 30 (Ref. 28). The
unstructured mesh requires less ingenuity to devise (though not necessarily to code) for com-
plicated regions than does the structured mesh, but requires considerably more computer time
and storage, as well as a much more involved data handling procedure. Combinations of struc-
tured and unstructured meshes can also be used, with structured meshes near the bounda~ies
connected by unstructured meshes (Ref. 29).

3.10 Adaptive Grid Schemes

Finally, dynamically-adaptive grids contlinually adapt to follow developing gradients in
the physical solution. This adaption can reduce the osclllations associated with inadequate
resolution of large gradients, allowing sharper shocks and better representation of boundary
layers. Another advantageous feature is the fact that {n the viscous regions where real dif-
fusion effects must not be swamped, the numerical dissipation from upwind biasing is reduced
by the adaption. Dynamic adaption is at the frontier of numerical grid generation and may
well prove to be one of {ts most important aspects, along with the treatment of real three-
dimensional configurations through the composite grid structure.

There are three basic strategles that may be employed in dynamically adaptive grids (cf.
Refs. 1,4) coupled with the partial differential equations of the physical problem. (Combina-
tions are also possible, of course.):

(1) Redistribution of a fixed number of points.

In this approach, points are moved from regions of relatively small error or solution
gradient to regions of large erro~ or gradient. As long as the redistribution of
points does not serfously deplete the n mber of points in other regions of possible
significant gradients, this {s a viable approach. The increase in spacing that must
occur somewhere {s not of practical consequence If it occurs in regions of small error
or gradlent, even though in a formal mathematical sense the global approximation is
not improved. The redistribution approach has the advantage of not increasing the com-
puter time and storage during the solution, and of being atraightforward in coding and
data structure. The disadvantages are the possible deleterious depletion of points in
certain regions and the posaibility of the grid becoming too skewed.

Recent examples of this adaptive approach in CFD are Ref. 30 in 2D and Ref. 31 in
3D.



(2) Local refinement of a fixed set of points.

In this approach, points are added (or removed) locally in a fixed point structure in
regions of relatively large error or solution gradient. Here there is, of course, no
depletion of points in other regions and therefore no formal increase of error occurs.
Since the error 1s locally reduced in the area of refinement, the global error does
formally decrease. The practical advantage of this approach is that the original
point structure is preserved. The disadvantages are that the computer time and stor-
age increase with the refinement, and that the coding and data structure are diffi-
cult, especially for implicit flow solvers.

Recent examples of thils adaptive approach in CFD are Ref. 32 and 33, both in 2D.

(3) Local increase in algorithm order.

In this approach, the solutlon method is changed locally to a higher-order approxima-
tion in regions of relatively large error or solution gradlent without changing the
point distribution. This again increases the formal global accuracy since a local in-
crease 1s achleved without an attendant decrease in formal accuracy elsewhere. The
advantage is that the point distribution i{s not changed at all. The disadvantage 1s
the great complexity of implementation in implicit flow solvers,

Tnis adaptive approach has not had any significant application in CFD in multiple
dimensions.

Adaptive redistribution of points traces its roots to the principle of equidistribution
of error (cf. Ref. 1,4) by which a point distribution {s set so as to make the product of the
spacing and a weight function constant over the points:

wAx = constant (22)

With the point distribution defined by a function x(£), where E varies by a unit Increment
between points, the equidistridbution principle can be expressed as

= constant 23)

a4

This one-dimensional equation can be applied in each directfon in an alternating fashion, but
a direct extension to multiple dimensions can be made {n either of two ways as follows:

From the calculus of variations, Eq. (23) can be shown (cf. Ref. 1) to be the Euler
variational equation for the function x(f) which minimizes the integral

[ 2
I ] u(E)xE dg (24)

Generalizing this, a competitive enhancement of grid smoothness, orthogonality, and concentra-
tion can be accomplished by representing each of these features by integral measures over the
grid. and minimizing a weighted average of the three. This approach was put forward in Ref. 30
and i{s discussed in detail in Ref. 1.

The second approach is to note the correspondence between Eq. (23) and the one-dimen-
sional form of the following commonly-used elliptic grid generation system, Eq. (7). Here the
"control functions®™, Pn' serve to control the grid line spacing and orientation. The 1D form
of this system is

X * ng =0 (25)
Differentiation of Eq. (23) ylelds

wan + X " 0 (26)
Then, from Eq. (25) and (26),

X w

LB @
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from which the control function can be taken as

-
. £
P 3 (28)



It is
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20.

logical then to represent the control functions In 3D as

p o5 n=1,2,3 (29)

This approach was put forward in Ref. 34 and has been applied in 3D in Ref. 31.
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4. CONTRIBUTIONS

4.1 Solicitation and Overview

The essence of this AGARDograph is a compilation of case histories deplcting the current
state of the art in grid generation activities for complex configurations. Researchers who
have been actively building and using grid generation codes for simulating 3D configurations
were soliclited to describe their experiences {n this area. In addition to the usual method
description, each contributor was asked to describe what grid topologies they have used and
what steps they took to generate a grid for a particular application. The contributors were
also asked to provide some detalls of what were the most time consuming tasks, what difficul-
ties they encountered and how these were resolved, and what steps they might take in the fu-
ture to improve matters or what software i3 needed to better generate grids.

None of the papers contributed to this AGARDograph used unstructured grids or rectangular
grids with unstructured boundary/interface elements. Nevertheless, they give a falirly accu-
rate picture of the capability for griding complex configurations as of about the first half
of 1987. The overall {mpression drawn from these contributions is that considerable capabil-
ity exists to adequately mesh relatively complex shap given adeq e time (measured In
weeks). This technology, or an alternative, must contlnue to improve, however, or it will
indeed impede the long term goal of complete aircraft simulation.

The papers contributed to this AGARDograph convey a wealth of information but here we
wish to note only two points. The first point, mentioned in the introduction, is that most of
the contributed papers have adopted the composite grid approach to griding complex configura-
tions, theredby allowing an extension of existing single-grid curvilinear grid algorithms.
Moreover, the most Lrevalent approach is the blocked (i.e., non-overlapped) grid method. Nine
of the eleven contributed papers deal with generating a grid for general purpose simulation of
fiow about complex configurations (the papers contributed by Yoshihara and by Sobieczky having
more limited objectives). Of these, only the approaches described by Eberle and by Benek did
not explicitly adopt the blocked grid approach, although the Benek approach can include
blocked grid boundaries.

Among the advantages cited for the composite grid approach are the following:



(1) ease of treatment of complex configurations.

(2) capability for local refinement and modification.

(3) reduced core storage.

{4) natural use of different flow equatlons in different regions.

A second point is that because of the emphasis on composite grids, the tasks of sub-
dividing the grids, generating surface grids, and providing interfaces have become more time
consuming and critical than the task of generating the interior grids. The contributed papers
on composite grids either strongly hint at, or explicitly note, that how a grid should be
subdivided depends on the geometry, the numerical algorithm used, the flow features, etc. So,
given a limited computer resource, the sub-grids of a composite grid must be selected with
care. This implies a learning process and a need for human {nteraction. Like geometry defini-
tion, the tasks of subdgriding, Interfacing, and surface grid definition are being assigned to
interactive workstations. Varlous levels of sophistication in treating these problems in this
way are evident in the contributed papers. What is strongly implied is that these are not
simple tasks or ones for which off-the~shelf software i3 available. This is evidently a pac-
ing area of research in complex grid generation,

Surface grid generation is seen to have a dominant effect on the quality of the volume
grid, to be very time-consuming, and to be in considerable need of improvement in regard to
the specification of boundary data sets and the interactive manipulation thereof, Thure is a
feeling that more emphasls should be put on the development of CAD geometry tools especially
suited to the needs of CFD.

The topological definition of the block structure is seen to require considerable experi-
ence and to be difficult to teach, There is a need for automation of this process, oerhaps
through the use of artifictal intelligence or other means.

The critical need for graphical interaclion, especially in regard to surface g~id genera-
tion, block definition, and grid control is evident. The process of grid generation for com-
plex configurations still requires too large an aznunt of man-time.

It appears now that the theoretical developments necessary for effective grid generation
are largely in hand, but that a very large amount of effort is still needed in the efficlent
implementation of the processes.




4.2 LESSONS LEARNED IN THE MESH GENERATION FOR PN/S CALCULATIONS

H. Yoshihara
Boeing Military Afrplane Cowmpany
Seattle, WA, USA

SUMMARY

Experiences encountered in the 2D mesh generation with the elliptic differential
equation method are described for the PN/S calculations over a generic fighter at a
supersonic Mach number and for a wing/fuselage at hypersonic Mach numbers, Importance
of the mesh quality is stressed, and the need of an improved cost-effective treatment
of the shocks is pointed out.

1. INTRODUCTION

Experience has amply demonstrated that accurate finite difference solutions can only
be achieved if the mesh {s sufficiently refined and orthogonal. That is, the auality
of the mesh impacts both the stability and accuracy of the numerical soviutions with
the sensitivity depending on the difference equations and boundary conditions on hand
and on the solution algorithm. An efficient mesh will finally impact dfrectly the
computer costs. In the following we shall recollect the experiences encountered in
the mesh generation for the parabolized Navier/Stokes (PN/S) calculations for the
supersonic flow over a generic fighter (Ref. 1) and for the hypersonic flow over &
generic wing/fuselage (Ref. 2). Features of the solution and solution procedure
relevent to the mesh generation wi)l be described.

The PN/S equations are based on the Reynolds-averaged thin-layer N/S equations in
which the pressure 1is assumed to be constant across tne subsonic portion of the
boundary layer (the sublayer approximation). Closure 1{s achieved wusing the
Baldwin/Lomax mixing-length turbulence model. When the inviscid portion of the flow
is supersonic, the solution can be obtained by a spatial marching in the free stream
direction. In the cases to be calculated the nose shock from the fuselage apex Iis
fitted, but shock waves accurring further downstream are captured. 1In comparison to
the the unsteady N/S procedure, with the PN/S procedure, the computer time is greatly
reduced; but, more importantly, the mesh generation fis greatly simplified, requiring
only a two dimensional (2D) wesh generation. The Tatter then permitted the treatment
of the complex fighter configuration. There is however a disadvantage introduced by
the sublayer approximation. There arises a numerical stability 1limitation requiring
the] streamwise marching step to be “much larger" than the height of the subsonic
sublayer,

For the 2D mesh generation, the Steger/Sorenson elliptic differentfal equation method
was used. It entails the solution of two decoupted boundary value problems for the
dependent variables r = r{n,{) and 6= 6(n,t). Here r and @ are the polar coordinates
in a wmarching plane in the physical space, whereas 1 and t are the cartesian
coordinates in the computational plane in which the physical space in a marching plane
is mapped to the interfor of a unit square. (See Figure 1.) The two elliptic
equations for r(m,f) and 0{(7m, L) contain non-homogeneous terms which are chosen to
impose orthogonality of the mesh in the neighborhood of the boundaries, Boundary
conditions on the unit square are posed to obtain the desired mesh topology and
spacing. The above boundary value problems were solved by a point-relaxation code
furnished by Dr. Denny Chaussee of NASA-Ames.

2. THE SUPERSONIC CASE-MODEL 350 GENERIC FIGHTER (REF. 1)

Calculations were carried out on the configuration shown in Figure 2 for a free stream
Mach number of 2.2, at 10 degrees angle of attack, and assuming a turbulent flow. The
marching coordinate x was taken as the body-oriented axis passing through the fuselage
nose. In general 91 mesh points were used on the half-.circumference and 45 points in
the radial direction. For the radial spacing, the locatfon of the first point off the
soltd surfaces was chosen; and the spacing of further outboard points was
geometrically stretched with a geometric ratfo that located the outermost mesh point
on the outboard boundary forwmed by the nose shock. The location of the first point
and the total number of "radfal” points were selected such that there was a minimum of
five points within the subsonic portion of the boundary layer. With the height u. ihe
subsonic sublayer varying over a wide range along the configuration cut, the location
of the first point off the surface should be correspondingly varied to achieve an
efficient mesh., However in the above calculations, the location of the first point
was fixed at the level to accommodate the smallest subsonic sublayer height, resulting
in excessive refinement elsewhere,

Selection of the Boundary conditions
The selection of the boundary conditions for the wesh generation problem 1s an

important first step which establishes the topology and spacing of the wmesh and
indirectly affects the orthogonality of the mesh in the domain interior. In general
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the procedure to establish the boundary conditions is to locate the boundary mesh
points in the physical space to achieve the desired spacing. The resulting values of
r and & are then assigned as the boundary values at the corresponding points in the
computational plane. (In the latter the mesh points are distributed uniformly along
each coordinate 1line.,) Along the configuration cut (ABCD), the mesh points were
distributed to fit the expected flow gradients. Thus for example the points would be
clustered about the sharp leading edge (Point C). Along the symmetry boundaries, AG
and DE, the mesh points were distributed with the geometric stretching described
earlier. Less obvious was the appropriate mesh placement along the shock EFG. Here
the mesh points were distributed with the same relative spacing used along the
configuration cut ABCD. Some tuning of the above boundary conditions was usually
required to obtain the final mesh.

The boundary conditions, as determined above, must be updated as the marching
progresses downstream, since the configuration cut can change greatly, in general
necessitating both an additfon as well as a redistribution of the mesh points.
Without adequate control, a clustered mesh about the wing tip drifted from its
intended location about the tip to the wing surface, resulting in a severe skewing of
the mesh by the misalignment of the end points of the radial mesh lines.

The elliptic boundary value problems with the above boundary conditions were solved by
point relaxation, and a typical mesh at a wing station is shown in Figure 3. Here the
convergence of the relaxation process must be carried out to a point that the desired
mesh orthogonality near the configuration surface has been achieved.

Treatment of the Swept Canard Trailing Edge

The marching plane used was a plane of constant x. The use of this marching plane
offered no difficulties until the swept trailing edge was intercepted as at Station X
of Figure 4, Here the configuration cut assumed the multiply connected domain shown
on the lower left part of Figure 4. The mesh for this configuration can be generated
in the usual way if the wake segment BD and GF are placed on the two sides of a siit.
The corresponding computational plane assumes the configuration shown on the right
part of Figure 4., The difficulty for the numerical formulation is that the flow
continuity conditfon across the slit envolves two points 1lying on separate 1line
segments. With an implicit treatment of the continuity conditfion, the simple solution
procedure used previously is no longer possible.

The above difficulty can be circumvented in several ways. In the case of a modest
trailing edge sweep, a shearing transformation can be made to unsweep the trailing
edge. The usual marching procedure can then be used across the trailing edge. The
procedure used in Ref, 1 however was to bridge the trailing edge by solving the
intervening domain containing the trailing edge by the unsteady N/S code ARC3D. Here
the solution at the slit points was determined using a one-sided difference, and the
resulting unequal values at the corresponding slit points were simply averaged for use
as finittal data for the next time step. Upon convergence, the continuity of the
solution at the slit would be achieved. The supersonic outflow condition was
prescribed at the downstream boundary. The 30 mesh for the ARC3D solution was
generated by interpolating a sequence of 2D meshes, one of which shown 1in Figure 5.
The ARC3D solutions on the two most downstream planes were discarded, and the solution
on the next two further upstream planes were used as fnitial data for the further PN/S
marching.

Treatment of the Underwing Nacelles

The inlet faces of the 350 configuration 1ie on a constant-x plane, so that no
difficulties were encountered in the march onto the nacelle. The marching was first
carried out downstream to the inlet face, yielding the solution on the mesh shown in
the upper part of Figure 6 containing the nacelle centerbody. A new mesh was then
generated at this station with the configuration cut now containing the nacelle
highlight (lower part of Figure 6). The solution on the upstream mesh (upper mesh)
was then interpolated onto the downstream mesh (lower mesh) to yield the initial data
for the further downstream marching.

Mesh Refinement About the Wing Tip

For the supersonic cases with the leading edge only slightly subsonic, the leadin
edge pressures, both on the upper and lower surfaces, should be reasonably wel
behaved without sharp suction or overpressure peaks. In Figure 7 the spanwise
pressure distribution at Station D is shown where a sharp peak occurred on the lower
surface near the leading edge. This {s to be contrasted to the expected smooth
distribution obtained at Statfon B also shown in Figure 7. The cause of the suspect
peak at Station D 1is due to the truncatfon errors assocfated with both the flow
solution and the numerical determination of the near-singular Jacobian 1in the
neighborhood of the "pointed™ leading edge. The sharp spike can only be removed by
using a sufficiently refined orthogonal mesh about the leading edge. (Here a
"conservative" differencing of the Jacobian offered no relief.)
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3. THE HYPERSONIC CASE-GENERIC WING/FUSELAGE (REF. 2)

PN/S calculations were also carried out for the generic wing/fuselage shown in Figure
8 at Mach numbers of 10 and 25 and at zero angle of attack assuming the boundary layer
to be turbulent. Fluid dynamically these hypersonic flows are more extreme relative
to the previous supersonic cases due to the appearance of greatly strengthened shock
waves and increased heating effects. In general the mesh generation procedure
followed that used in the above supersonic case, but the requirements on the mesh
quality were more stringent due to the increased “severity" of the flow. A typical
mesh of dimension 101 (half-circumference) x 60 (radial) generated with the above
elliptic method is shown in Figure 9. The first mesh point from the surface over most
of the configuration was located at 0.02 inches, but closer locations were used in the
nose and wing leading edge regions. The axial marching step was 0.5 inches. (These
dimensions are to be viewed relative to the fuselage length of 1235 inches.} In the
following, additional facets of the mesh generation process arising by the {ncrease of
the Mach number are described.

The Temperature Boundary Layer

In Figure 10 raasal profiles of the velocity and temperature at the crest point at
Station 533 are shown for a turbulent flow at M = 10, Here a surface temperature of
18000 R was prescribed, Of particular significance {s the highly-peaked temperature
overshoot arising in the lower part of the boundary layer generated by the intense
eddy dissipation. It is clear by examining these profiles that the adequacy of the
mesh refinement in the boundary layer is dictated, not by the more customary velocity
profile, but by the temperature profile.

Shock Capture

In the present calculations the nose shock from the fuselage apex was fitted, but
shocks arising further downstream, as the wing bow shock, were ceptured. In the shock
capture process an appropriately refined mesh must be used to obtain an acceptable
shock thickness. In the case of an inclined shock cutting across the mesh, a fine
mesh must be used in all coordinate directions cutting across the shock., Thus 1f the
shock ts aligned with the “transverse”™ wesh lines, a fine mesh would be required only
in the direction cutting across the shock.

The leading edge radius of the wing was 0.5 inches (this to be contrasted to the win
root chord of the order of 500 inches). With a streamwise wmarching step of 0.
inches, the question then arises as to how the detached shock flow about the leading
edge with a radius equal to the marching step could be adequately resolved. The
answer {s that the detached shock flow is essentially "aligned” w'th the leading edge,
and the marching in the computational plane takes place essentially in the direction
of the leading edge. That is, the coordinate lines are aligned with the strong
portion of the detached shock. The resolution of the detached shock flow is then
dictated, not by the 0.5 inch marching step, but by the more highly refined transverse
mesh in the marching plane. Away from the 1leading edge region, this alignment no
longer prevails and with the transverse mesh itself coarsened, the shock will assume a
much larger thickness.

For the proper design of external compression inlets, which might be incorporated on
the wing lower surface of the above configuration, it {s essential that the shocks
from the compressfon ramps be captured with a sufficiently small thickness. Also to
obtain the proper interaction of the wing shock on the thick fuselage boundary layer,
it is again important to capture the wing shock with a sufficiently small thickness.
In a 3D problem, one would turn to a 3D adaptive mesh program to align the mesh with
the shocks as well as bunch the mesh lines in the directfon normal to the shock. The
present PN/S procedure is a 2D method, solving the flow only in a cross-flow marching
plane. Use of an adaptive mesh program fn this marching plane clearly would not
achieve our goal completely. The x-marching would still cut across such aligned
shocks, necessitating a refined marching step.

Shock-on-Shock Interaction

As one marches sufficiently far downstream, the nose shock from the fuselage apex will
approach the wing leading edge and intersect the wing detached shock. A difficulty
now arises as the 60 radial mesh points are squeezed into an ever-decreasing interval
as the shock (the outer boundary) approaches the wing leading edge (the inner
boundary). Moreover, computational difficulty can be anticipated as the fitted nose
shock approaches and intersects the captured wing shock, ancd the treatment of the wing
shock is switched from a capture to a fitting procedure as it emerges as the most
upstream shock. To circumvent these difficulties, the treatment of the nose shock was
ivftched from a fitting to a capturing procedure just upstream of 1ts intersection
with the wing shock. In this switch, the outer boundary was selected parallel to the
expected shock location and located sufficiently outboard to cover the upstream spread
of the captured shocks. Al1 60 mesh points were employed in the greatly reduced
radial interval.
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4. CONCLUDING REMARKS

In supersonic and hypersonic problems, the use of the PN/S method greatly simplified
the mesh generation problem, reducing it from 3D to 2C. However, the severe stiffness
of the problem together with the extremeness of the flow, particularly the hypersonic
case, placed stringent quality requirements on the mesh. The treatment of shock waves
is still a serious problem. Use of an adaptive mesh in the PN/S cross-flow plane will
still require a mesh refinement in one transverse directfon and fn the marching
direction. Shock fitting of the interior shocks does not offer an attractive

alternative.
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4.3 THREE-DIMENSIONAL ELLIPTIC GRID GENERATION FOR AN F-16
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SUMMARY

A case history depicting the effort to generate a computational grid for the
simulation of transonic flow about an F-16 aircraft at realistic flight conditions is
presented. The flow-solver for which this grid is designed is & zonal one, using the
Reynolds-averaged Navier-Stokes equations near the surface of the aircraft, and the
Euler equations in regions removed from the aircraft. A body-conforming global grid,
suitable for the Euler equations, ie first generated using three-dimensional Poisson
equations having inhomogeneous terms modeled after the two-dimensional GRAPE code.
Regions of the global grid are then designated for zonal refinement as appropriate to
accurately model the flow physics. Grid spacing suitable for solution of the Navier-
Stokes equationa is generated in the refinement zones by simple subdivision of the given
coarse grid intervals. That grid generation project is described, with particular
emphasis on the global coarse grid.

INTRODUCTION

The F-16 is widely employed in the US and NATO air forces, and that is the first
of several reasons for the choice of that aircraft in this simulation. Secondly, meny
of its design features, such ¢s leading-edge extensions or strakes, appear on fighter
aircraft currently under development. Additionally, a great body of wind-tuanel date
for that aircraft already exista. Lastly, Reznick! reports that there is work under way
at present to expand the F-16's flight envelope to allow higher angles of attack. The
propulsion system is capsble of gsustaining such attitudes, but certain undesirable
flight characteristics prevent it. It is thought that computer simulation could eid
that effort.

Zonal approaches have the advantage that geometrically complex flow fields such as
this one can be simulated by zones which, by themselves, are geometrically simple.2
Another advantage is that different flow-modeling equation sets cam be used in different
zZones, as are appropriate to local flow conditions. This feature makes it possible to
obtain solutions within a reasonable amount of computer time. The alterpative, solving
the Navier-Stokes equations everywhere in the field, would be computationally prohib-
itive. Further, in a zonal approach only the largest single zone need fit into the
computer’s high-speed memory at any one time. Here
again, the alternative of putting the entire problem
into the computer all at once would be prohibitive
even for most modern computers. Also, the grid can
be modified locally, for example decreasing the
spacing according to the needs of the flow solver,
without perturbing other partas of the grid.

GRID TOPOLOGY

A cylindrical grid topology about the fuselage
is used beceause of jits ability to treat a body with e
sharp nose, as illustrated in Fig. 1. This topology
also will facilitate the later addition of a grid
zone for the exhaust plume. This fuselage grid is of
the H-type as seen from the side or from the top. It
appears to be of the O-type when viewed from the

e

coordinate surface are the ease with which it mates
with the cylindrical fuselsge grid, and its ability
to provide an adequate pnumber of points in the far
field outboard of the tip.

“

fraat or resr, thus giving rise to the terminology rﬁ t
H-O-type as describing this cylindrical grid. ::‘i
Further exsamination of Fig. 1 shows the grid ':h
sbove and below the wing, seen from the front, to be 'II
of the H-type, with the wing in a slit. The main 'I'
advantages to the wuse of H-type topology in this II

A cross—-sectional view taken normsl to the span Figure 1. Front-Quarter view
direction, shown in Fig. 2a, revesls an airfoil of F-16, showing fuselage,
section with the surrounding grid being of the symmetry-plene, and wing.




H-type. This grid type could
potentially waste =many pointe upstream
and downstream of the wing when the
wing is embedded in a refinement zone,
but the solution to this problem, shown
in Fig. 2b, is to terminate that zone
just upstream and downstream of the
wing. Another disadvantage of this
approach is that certain types of
flow-solvers wusing H-type meshes have
difficulties resolving a blunt leading-
edge. But the leading-edge of the F-16
wing is very sharp, so this problem is
minimized. The overriding advantage of
this type of grid is the ease with
which it can be mated to the fuselage
grid. If the grid were of the 0- or
C-type in thias direction, great
difficulties would be encountered in
aating to the fuselage, and in
achieving adequate resolution upstream
of the wing. Since the wing grid
appears to be of the H-type when viewed
in both span-normal and flow-normal
directions, its topology is referred to
as H-H-type.

When designing a mesh for a
complex configuration such as this, it
is difficult to quantify the effect of
the chosen topolology on the serious
matter of putting an adequate number of
points where they are desired,
principally near the fuselage- and
wing-surfaces, while restricting the
total npumber of points. Holst and
Thomas® have attempted to clarify this
matter with their Mesh Efficiency Ratio

(MER) . Rezpnick in Ref. 1 calculates
that the MER has very favorable values
b) Refinement zones added. for the type of ¢grid topology used
here, H-0 on the fuselage and H-H for
Figure 2. G@rid surface normal to span. the wing. The efficiency of the mesh

is important, since this flow solver
challenges the speed and storage
capabilities of even the most powerful modern computers.

This flow simulation was first performed for a simplified version of the aircraft,
consisting of the fuselage, strake, and main wing only, with the inlet fared over.+¢
Later addition of the iplet provided a perplexing topological challenge, as illustrated
in Fig. 3a. The solution® chosen for this work was to introduce two warped wedge-shaped
zones, shown in Fig. 3b. One wedge has its edge emanasting from the lower side and
bottom of the fuselage, upstream of the inlet, and its base at the face of the inlet.
The other warped wedge-shaped zone nestles in the diverter region, between the top of
the inlet and the bottom of the fuselage. The global grid wraps around the fuselage
having these two zonal grids already attached.

GLOBAL GRID GENERATION

The present approach to the generation of the coarse global grid follows the two-
dimensional grid generation program* for airfoils of Sorenson and Steger.®:7 This
elliptic approach, with inhomogeneous terms that automatically control grid cell height
and skewness at boundaries, was later extended to three dimensions for simple shapes,®
and recently for realistic fighter aircraft.?:1° This elliptic grid generation method
has been seen, in both two- and three-dimensions, to be forgiving of surface slope
discontinuities. Many surface slope discontinuities appear on this aircraft, e.g., at
the edge of the strake, and the edges of the shelf aft of the main wing. Hence this
grid generation method iu appropriate for this problem. Apother consideration is that
the refinement grids, as seen in Fig. 2b, have some coordinate lines that are coincident
with the course global grid. So for the refinement zone grids near the surface to be of
reasonable size and not skewed, it necessary for the global grid to be well-controlled
near the surface. The present grid generation method’'s ability to control cell height
and skewness et boundary surfeces is therefore appropriate for this problem.

The program for generating grids about simple analytic shapes, reported in Ref. B,
was the starting point for this effort. The first step was to convert the program from

*Called GRAPE, an acronym for GRids about Airfoils ueing Poisson’'s Equation
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spherical topology to cylindrical
topology. The previous program with

spherical topology used apatial
variables rho,theta,phi. The new
program is in cylindricel topology,
but it uses cartesian spatial
variables x,¥,z. The cylindrical

nature of the topology is imposed by
the boundery conditions in physical
space on the grid generation
equations. The aircraft is assumed,
for purposes of this study, to operate a) Right half of forebody.
at gero yaw angle, hence the flow
field can be assumed to be bi-
laterally symmetric about the verticel
center plane. The flow-solver
requires a one point reflection
boundary at the symmetry plane, so
that feature is included, both above
and below the streamwise axis.

The next matter to be sddressed
was the treatment of the axis upstresm
of the nose of the aircraft. In the
region of the fuselage, one face of
the computational cube warps to
conform to that fuselage. But b} Inlet and diverter zones added.
upstream of the nose of the aircraft,
that face collapses to the axis line. Figure 3. F-16 with inlet.

The Poisson equations can be solved,

and thus a grid generated, in that

case. However, the GRAPE grid generation program and its three- dimensional versions
also solve side-condition equations to find the inhomogeneous teras which give the
required control of cell size and skewness at boundary faces. Those side-condition
equations become undefined when the face collapses to a point or a line.

Three possible solutions to this dilemma were considered. One would have been to
just "turn off" the inhomogeneous terms there, i.e., set them to zero, leaving what
would locally be the Laplace equations about the axis. It was expected, however, that
such a grid would have been unacceptable. It was intended that the clustering effects
on the body would strongly attract points to the body; to discontinuously release that
attraction would have produced an unacceptable grid near the nose of the aircraft. The
second possible approsch would have been to fix the values of the inhomogeneous terms
along the axis as being equal to (or some simple function of) the terms on the fuselage.
This was rejected due to the perceived need to have terms at those places which really
did constrain the grid as required there. The third solution, the one adopted, was
suggested in private communication by by J. L. Steger and is illustrated in detail in
Ref. 9. The axis, a lipne having a zero radius, was temporarily expanded to have a
small positive radius using a simple apalytic transformation. Thus the face which bad
collapsed to a line was re-expanded to resemble a bparrow cylinder, or a "sode-straw."”
The grid wes generated about this configuration, then shrunk back down to an axis by the
inverse of that simple transformation in the radial direction. This artifice allowed
the computation of inhomogeneous terws everywhere on that face of the computational
cube.

The next challenge in this grid generation effort was to put the wing into its
slit., Upstream of the leading-edge, outboard of the ¢tip, and downstream of the
trailing-edge, there is s planform grid surface, i.e., a grid surface in which the wing
resides. But the wing, embedded in this planform surface, has two surfaces: upper and
lower. So a fundamental data storage problems arises: how can one index refer to one
grid surface off of the wing, and two surfaces on the wing? The solution used here is
to make the plenform eurface to be "double-stored." There are two grid surfaces,
denoted by two different indicies, which are coincident everywhere off of the wing. On
the wing one of the two grid surfaces conforms to the upper surface of the wing, and one
to the lower. To generate such a grid and use it in e flow-solver is tedious, but
probably less so than other approaches. The principal coding caveat is to insert an "if
test” when differencing across that double-stored surface, and approprietely increment
the ivdicies.

The boundary condition arrangement in the grid generation to preserve the wing in
its slit was made as simple as possible. Straightforward explicit boundary conditions
were imposed on the upper and lower surfaces of the wing. It was felt that the ease of
coding in this wetter far outweighed any advantages which wmight have accrued from more
sophisticated implicit boundary treatments.

However, in addition to instituting Dirichlet boundeary conditions at the wing, it
was necessary to add inhomogeneous terms to impose on the wing surfaces the same kind of
control of cell height and skewness as is imposed on Lhe fuselage. See Ref, 10 for e
detajiled treatment of those inhomogeneous terms, as well as the Poisson grid generation
equations to which they sre applied. Those terms are similear in forms to the body’s
terms, but required some coding effort, since the wing surfaces are examples of a
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different family of grid surfaces vis-a-vis the fuselage surface. The fuselage, in this
effort, is & surface of constant computational variable zeta. The wing surfaces are
surfaces of constant xi. Inhomogeneous terms were alsoc added to cluster lines in the
planform grid surface toward the leading-edge and trailing-edge of the wing. Those
terms are degenerate two-dimensional versione of the terms on the body and wing surface,
and are identical in form to the two-dimensional clustering terms in the GRAPE progranm.

The attempt was also made to add similar terms to cluster lines outboard of the
tip, to make lines in that region to be near-orthogonal as viewed from above. That
effort was not successful, however. It is a fundamental trait of elliptic grid
generation methods, including this one,
that grid lines tend toward a unifors
distribution. Thus, if points ob a
boundary asare tightly clustered in the
direction tengent to that boundary, and
lines emanate from those tightly
clustered points, those lines will tend
to repel each other. That mutual
repelling action can be 80 intense that
the lines deviate greatly from being
orthogonal to the boundary, regardless
of the presence or absence of clustering
terms. This problem was encountered
when attempting to add inhomogeneous
terms at the wing tip for the purpose of
controlling spanwise lines proceeding
outboard from the tip; see Fig. 4. A
grid solution could not be obtained; the
grid equation convergence history became
oscillatory. The resolution of this
problem was to extend the wing outboard
with zero thickness all the way to the
outer boundary. Thus spanwise lines in
that region were defined as part of the
initial conditions to the grid
generation, and they remained in place
for all computational time.

The next step in the process of

Figure 4. Sketch suggesting the tendency applying the present grid generation
of grid lines emanating from closely-spaced technology to the F-16 flow simulation
boundary points to mutually repel, causing problem was to fit the surface of that
instability. sircraft, and to obtain a good

distribution of body points. This

proved to be a formidable task. The
body definition was obtained in the form of tabulated points describing the surface.
However, the definition of the airplane’'s shape so obtained was in seversl pieces, with
different coordinate systems for each piece. Some of the pieces did not exactly fit
together. Further complicating this situation was our intention to start with an F-16
simplified by a fared-over inlet and the deletion of the empenage, missile rails, and
ventral fins. These modifications, having the purpose of simplifying the initial task
of the flow-solver, made the body-fitting significantly more difficult. The body-
fitting effort was performed by Edwards!! on a Calma CAD/CAM systenm. While this device
and its software aided in the smoothing and faring operations, certain deficiencies were
found which wmade interpoleting in some coordinate directions practically impossible.
Thus those point distribution functions devolved ta bte part of the grid generator.
These body-definition and distribution problems reached a zenith later, when attempting
to restore the inlet. For various reasons having to do with the availability of
personnel and machines, almost three man months were spent creating the wedge zones, a
task which should have bordered on the trivial.

Distribution of body points is an area of concern, even under ideal circumstances.
Ac elliptic grid generator is sensitive to not only the shape of the body, but the
distribution of points on it. Consider a trace proceeding around the fuselage in a
plane cutting it normal to the streamwise axis, with that trace proceeding across the
edge of the strake. The body points on that trace must be clustered spproaching the
strake edge from both directions, with minimum tangential spacing immediately above and
below the edge. (A two-dimensional analogy to this is that points must be clustered to
the nose of a sharp-nosed airfoil when generating an O-type grid about it.) If these
precautions are not taken, the elliptic grid generator will et best give a grid with odd
angles at the edge, and at worst fail to converge.

Distribution of body points is likewise criticel for the flow-solver as well. In
the early months of this effort, computer storage limited the number of grid points in
the chordwise direction on the wing, which in turn limited how fine the spacing could be
in that direction at the leading-edge. Thus the first effort failed to resclve the
shape of the leading-edge, leading to a failure to correlate with test data at high
angles of attack. This problem was resolved in later efforts with NASA/Ames’' new CRAY-2
computer, having 256 million words of high-speed memory.

The resulting coarse global grid, illustrated in Fig. 5, has 26 points around one
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half of the fuselege, from bottom to top, including the symmetry plane and the
reflection boundary surfaces. The grid has 55 points in the streamwise direction,
including 5 upstream of the nose and 5 downstream of the jet-exhaust. Twenty points are
used in the radial direction, giving 28,600 total
pointe in the coarse grid. Fifteen points are used
in the chordwise direction on the wing, with 10
spanwise stations. The minimsum spacing normal to
the fuselage surface, between the surfece and the
next point outward, was controlled by the GRAPE-type
terms to be approximately 4 inches on the real
aircraft. Approximately the same spacing was
required on the upper and lower surfaces of the
wing.
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The differential equation solver wused in the ’WW“%
drid generation was point-SOR. While this method is
admittedly one of the slower ones in use today, it
was chosen for its simplicity and ease of coding.
The placing of the wing in its slit, for example,
would have been a much more complicated task with a
more sophisticated equation solver method, such as
ADI. With no effort at vectorization, this FORTRAN
code produced cc .:se grids in aprox. 100 iterations
at aprox. one second per iteration on a CRAY XMP

4/8 computer.
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GENERATION OF RBFINEMENT GRID ZONES

Refinement zones were specified to provide
viscous clustering in the direction normal to the
surface wherever it was expected that viscous
effects would be significant. Grid points added in Figure 5. Cutaway view of
the surface-normal direction in refinement zones coarse grid.
were located by a bisection iteration scheme applied
to arclengths between consecutive points, for the
purpose of enforcing a constant ratio between the lengths of successive grid intervals.
Grid points were added in surface-tangent directions by dividing exiating coarse grid
intervals into simple fractions of their previous length, e.g., by halving, quartering,
etc. Refinement zones are seen in Fig. 2b, a view of a spanwise-normal grid surface
showing refinement zones surrounding the wing, and in Fig. 6, a streamwise-normal grid
surface near the wing. Details of the generation of the refinement =zones are described
and illustrated on pages 22-31 of Ref. 1. A total of 18 zones were used in this case
with the fared-over inlet, having in them a total of 304,134 points. Flow-field
solutions were obtained using this grid,
and are described in Ref. 4. The grid
for the case with inlet, including 19
zones, contains a total of 384,094
points. Flow-field solutions are
described in Ref.

CONCLUSIONS AND FUTURE PLANS

AN
SRR
The first and most  obvious f4‘3§§§\\§“\“
conclusion to be drawn here is that the '\
above method works. Grids were

generated, and flow-solutions to this
very difficult problem were obtained,
and they did agree with test data. See
Refs. 4 and 5.

But the call for this paper
requested "...a description of what you
did and what worked....some details of
what were the most time consuming tasks
and what difficulties you had to
overcome....e brief written tutorial on
how you generated the grid for your
application.” In accordance with that
request the following observations are Figure 6. Streamwise-normal grid surface
sade. near wing, showing refinement zones.

The most problematical part of this
grid generation project was obteining an adequate fitting of the body surface, and
distributing points on it, i.e., obtaining an adequate surface grid. There were several
contributing factors to this matter, including inadequacies and unreliabilities in the
CAD/CAM software, and difficulties in obtaining time on the unique hardware on which it
must run. Also contributing here was the marginal suitability of the "raw" body
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definition which was input to the CAD/CAM, although this problem may be traced to
incompatibilities between the different CAD/CAM systems here and at the airframe
manufacturer. An effort is underway as of this writing to adapt the PATRAN software to
this task, but results have not yet been obtained.

But a more fundamental problem here may be the way surface-fitting is viewed,
relative to other parts of the field of Computational Fluid Dynamics (CFD). Body-
fitting is not seen in some quarters as a "glamorous” career direction. Those
performing these tasks sometimes move on to other regions of the field, leaving a lack
of continuity, a lack of the easy expertise which comes with experience. A solution may
be to recognize body-fitting for what it is: a major pacing item in modern application-
ally-oriented CFD, and to accord it the respect which it deserves. Another appcroach
might be to have an easy-to-use "turnkey” CAD system, one which is oriented to CFD
applications, and could be easily used as a tool by any CFD researcher to obtain
superior body fitting.

Some significant grid generation technology has been developed in this work,
specifically an extension of GRAPR to three-dimensions and the application of it to
zonal approaches. This author has had several requests for this grid generetor from
other CFD researchers, and so an effort is underway to package it for export. This
requires complete re-coding, in FORTRAN, to produce a program which is neat, modular,
robust, well-documented, and easily applicable to a wide variety of cases. The program
will allow the flow-field to be broken-up into a large number of zones, and it will be
capable of solving the grid-generation equations in all zones simultaneously, with
information passing between zones. [t will be possible to impose near-orthogonality and
control of surface-normal spacing at all six faces of each 2zone. Single-dimension
addressing will be used, facilitating the gemeration of zones having a great latitude in
their sizes (e.g., it will be possible to generate one 2zone with dimensions 10 x 10 x
100, a second zone being 10 x 100 x 10, and a third zone that ie 100 x 10 x 10, 8ll with
the same program which does not have dimensions 100 x 100 x 100). The program will not,
however, have any capabilities for fitting body surfeces or distributing points on thenm;
it has been (aAnd continues to be) the philosophy of the GRAPE grid generator that
surface-fitting is & formidable problem in itself, and that the surface-grid is a
boundary condition which should be an input to the grid generator.
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4.4 COMPONENT ADAPTIVE GRID GENERATION
FOR AIRCRAFT CONFIGURATIONS
by
N.P. WEATHERILL

J.A. SHAW
Aircraft Research Association Ltd., Manton Lane, Bedfurd, England

INTRODUCTION

As numerical algorithms for the solution of the Full Potential and Euler
equations mature there is an increasing demand to simulate the flow over complex
aerodynamic shapes. However, of the many problems in engineering and the
physical sciences which involve grid generation, the shapes and ?ength scales
encountered in aerodynamics are some of the most varied. The generation of
a suitable set of points around an aircraft shape, therefore, affords a
significant technical challenge and one which is currently being pursued by
many groups.

The concept of the grid generation technique adopted at the Aircraft
Research Association was originally proposed by Forsey as discussed in Ref.1.
The development of a general grid generation method applicable to a wide range
of aircraft configurations, involves a block decomposition of the flow domain
with grid points within each block computed by solution of a set of elliptic
partial differential equations. This method enables grid structures to be
constructed which are compatible with each separate component in a configuration
while maintaining a globally smooth grid. This component adaptive grid
generation technique has been applied to a variety of configurations and details

of the method have been giver e]seuherez'a"'s. It suffices, theretore, to give
only a brief outline of our approach.

The method utilises the basic concept of block structured grids. The flow
domain is subdivided into a set of non-overlapping blocks. The arrangement
of the blocks defines the grid structure or grid topology which is appropriate
for the geometrical configuration. The block subdivision is performed
automatically by a block decomposition algorithm. Each block is chosen to be
topologically equivalent to a cuboid in that it has six faces and eight corners
and can, therefore, in principle, be mapped into a unit cube in computational
space without change in topological structure. Cartesian grids in the unit cubes
in computational space map to curvilinear grids in physical space. Many faces
within the block structure are boundaries between blocks in the interior of the
flow domain and as such are purely notional boundaries which have no physical
significance. At such boundaries a continuity condition can be imposed which
ensures grid lines pass smoothly through the interface of two adjacent blocks.

Following the ideas of Thompsor, Thames and MastinG, a set of elliptic partial
differential equations have been used to generate grid point coordinates
within each block. These equations can be written

o xgigd = -plxgi )

where g'J are the metric terms, X the grid point coordinates and ¢' the
computational coordinates with the tensor notation ij taking values of 1,2

and 3. The source terms p! are used to control the positioning of grid 7
points and their form is computed using the ideas of Thomas and Middlecoff’.
The continuity condition at block faces is applied by defining a computational
molecuie for points on the faces which is compatible with the finite difference
solution of the elliptic equations {(1).

Following the ideas of Coons8 the surface of each component of a
configuration is modelled by a netwurk of parametric bi-cubic patches. Any
patch can be described by the matrix equations

el - x

where X = (x,y,z), A = (53,s2,s,l), 8 = (t3,t2,t,l) and M is a matrix
containing the parametric derivatives of X and some blending functions.

Grids on the surface of a geometry are computed in the parametric space (s,t)
using the equivalent two-dimensional form of equation (1).

Here we propose to discuss the application of these techniques to
wing-body-canard geometries. These configurations are sufficiently complicated
to highlight the difficulties inherent to grid generation and provide good
test cases on which a more detailed discussion of our approach can be based.
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TEST CASE

The test case geometries are shown in Figures | and 2. The two afford
interesting geometrical contrasts and represent two typical configurations
which might be confronted in the Aergspace industry. Geometry A, shown in
Figure 1, has a swept forward wing with the canard position at the body side
approximately a canard chord forward of the wing. The canard elevation is
higher than that of the wing.

FIGURE 1. GEONETRY A. SUEPT FORUARD WING WITH CAMARD AND BGDY.

Geometry B is shown in Figure 2 where it should be noted that the body has
been extended far downstream to avoid problems with afterbody effects. At

the bodyside, the x-value of the trailing edge of the canard is approximately
equal to the x-value of the leading edge of the wing. Due to the sweepback

of the leading edge of the wing, with respect to the trailing edge of the
canard, the x-value of the trailing edge of the canard tip is several canard
tip chords upstream of the leading edge of the wing. This spanwise variation
of the relative positions of the wing and canard leads to a conflict in the
appropriate chordwise topology for the body side grid and the canard tip grid.
The elevation of the canard is above that of the wing.

=
Saanocy

FIGURE 2, GEOMETRY B. WING-BODY-CANARD CONF [GURATIDM,
TOPOLOGY DEFINITION

In principle, the multiblock method described above allows a wide range of
grid structures to be defined for a given configuration. However, the problems
associated with grid control are strongly influenced by the choice of grid
structure for a geometry. A wise choice of grid topology, which utilises the
properties of the elliptic equations (1) used to generate the grid, can ease wie
requirements on the grid control technique. However, an inappropriate grid
structure can Tead to unacceptable demands on any coordinate system control method.
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In addition to grid control requirements, the specification of any suitable
topology can be problematic. The mechanics of defining a grid structure within
the multiblock framework involves specifying, for each block, the number of grid
points in each computational coordinate direction, and for each face the
appropriate boundary condition type for the elliptic grid generation equations.

For the continuity boundary condition it is necessary to specify the
adjacent block, the appropriate adjacent face of that block and the
orientation between the coordinate axes fixed in each block. The
specification of this information although straightforward for a simple
grid structure is time consuming and tedious. If one aspect of a
configuration is changed, for example, the canard moved a small distance
relative to the wing, then this may involve a significant modification to
the topology.

It is clear from these brief comments that the definition of a suitable
topology for a given configuration requires expert knowledge. A grid
generation technique, which is to be used by non-CFD specialists, must
overcome the problem of topology construction. To this end, an automatic
topology generator has been developed which, given a configuration, subdivides
tne flow domain into a set of blocks, the arrangement of which is consistent
with a component adaptive grid structure.

The ideas behind the automatic block decomposition algorithm are best
illustrated in two dimensions. Consider an aerofoil in a finite two
dimensional domain. In computational space (f,n} the aerofoil coordinates
map to a cut of constant n. In a block structured domain this cut maps to
a side of a rectangular block. Assuming a unique boundary condition type for
each side, a block decomposition of the domain would result in six regions,
as shown in Figure 3a. Now introduce three additional cuts in the comnutational
domain; two cuts of constant n, one above and one below the aerofoil and a
third cut of constant ¢ - upstream of the aerofoil. The resulting block
decomposition is shown in Figure 3b. It is now possible to make a small change
in the block structure to construct a grid topology in which a C-grid is locally
embedded around the aerofoil within a global H-grid. Such a transformation
is shown in Figure 3c.

L5

FIGURE 3. BLOCK DECONPOSITION FOR ARt REROFOIL.

Clearly the transformation performed around point A in Figure 3¢ could
be applied around B to give a polar structure around the aerofoil. Other
transformations are possible which give rise to other block structures and
different singularities in the grid. One such example is shown in Figures 3d,
e and f wherein the block decomposition gives rise to a six point singularity
ahead of the aerofoil section. Experience in generating grids with singular
points indicates that although the position of singularities is not easy to
control, two five point singularities away from the aerofoil are preferred
to a six point singularity positioned just ahead of the leading edge. The type
of transformation shown between Figure 3a and 3¢ has been “dopted in the
automatic topology generator.

The arguments presented here in two dimensions are applicable to three-
dimensional shapes like a wing, pylon, tail, body etc. In such cases the
local block structure around each component is pseudo three-dimensional in the
sense that the locally adapted grid structures shown in Figure 3c are repeated
along the component. At the termination of the component the same grid
structure continues but is constructed around a degenerate form of the
component. For example, a locally embedded C grid around a wiu, ‘- ~ontinued
outboard of the tip where it is constructed around an imaginary extension of
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the wing which has zero thickness. For a locally embedded polar grid around
a body this degenerates into a polar grid encircling a singular line upstream
of the body nose.

AUTOMATIC TOPOLOGY GENERATOR

Details of the configuration are input to the topology generator by
means of a schematic of the geometry. Each component of a configuration is
input as a plane of constant x,y or z and given the flow domain to be within
the cube [0+1000, 0+1000, 0-1000},it is straightforward to generate the
appropriate block structure for a Cartesian grid given the constraint of one
boundary condition type per block face. Following the ideas sketched in
two dimensions, a first step to the construction of a component adaptive grid
topology is the addition of planar cuts in the domain. For a given isolated
component the local embedding of a C or O structure is reasonably straightforward.
The key to extending such an approach to multiple components is to ensure that
the new blocks introduced to provide the C and 0 structures never map to other
new blocks for different components. In other words, the introduction of the
new blocks must always be performed in a locally Cartesian block structure.

In practice, the use of the algorithm is straightforward. Given the
geometry of Figure 1 it is clear that it is possible to construct several
topologies within the class of topologies generated by the automatic approact.
The freedom to construct different grid structures rests with the specification
of the schematic. A study of the geometrical features could lead to the
definition of the following schematic.

Body: (300,0,300}, (700,0,300), (300,0,700), (700,0,700)
Wing: (500,0,500), {(600,0,500), (500,400,500), (600,400,500)
Canard:  (400,0,550), (450,0,550), (400,200,550),(450,200,550)

In this form the canard is upstream of the wing and lies above the wing
elevation. Such a schematic (schematic A) would lead to a C-structure around
the canard which continued above the wing. An outline of the expected grid
structure at the body side is given in Figure 4.

FIGURE 4. GRID STRUCTURE ON THE BODY DERIVED FROM GEONETRICAL SCHERATIC A.

In contrast, it would also be appropriate for geometry A to define a schematic
in which the elevation (i.e. z coordinate value) of both wing and canard were
the same. In this case the schematic for the canard could be redefined to be

Canard:  (400,0,500), (450,0,500), (400,200,500}, (450,200,500}

This schematic, (schematic B), wouid then lead to a grid structure on the body

side as indicated in Figure 5. Both topologies are sensible for the configuration
and the better of the two can only be determined by viewing the grids generated

by the two approaches.

Having defined a schematic, the topology generator, which is executed
interactively, performs the necessary planar cuts ready for the embedding of
the C and 0 grid structures. The user is prompted for the black dimensions,
which, since at this stage the block structure is Cartesian, requires the
specification of IB+JB+KB values, where IB,JB and KB are the number of blocks
in each of the coordinate directions. The transformations are applied to produce
the final topology and the new blaocks are assigned dimensions consistent with the
existing structure. For the first schematic the total number of blocks in the
construction is 430 (1B=9,JB=4,KB=11} and in the second 322 (IB=9,JB-=4,KB=8).
The topology generator also outputs auxiliary information for the post-processing
of grids and flowfield solutions. The algorithm also outputs information which
is used by the grid generators to assist with grid control.

——— ———————
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FIGURE 5. GRID STRUCTURE Off TME BODY DERIVED FROM GEOMETRICAL SCHEMATIC B.

The grid structure on the surface of each component and on the
outer boundary is readily derived from the three-dimensional grid topology.
The outer boundary is constructed from a number of different components.
These compgnents, which when combined form a rectangular box, are defined
to be consistent with the field topology. For example, the planar cut in
the topology at the wing tip extends to the auter boundary and forms the
intersection between two parts of the boundary. It is consistent with the
spanwise grid topology to set this intersection line to the y coordinate
of the wing tip. A similar procedure is adopted on the cut at the
canard tip. Each component of the outer boundary is modelled in a similar
manner to a component of the configuration and the grids are generated in
parametric coordinates.

SURFACE GRIDS

The grids on the surface of each component are generated in parametric
coordinates and in an order which ensure that grid properties of one
component can, if necessary, be used to ensure a consistent grid on another
componcnt. The grid topology for the body, consistent with the field
topology generated from schematic A of the wing-body-canard configuration
geometry A, is given in Figure 6.
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FIGURE &. BLOCK STRUCTURE FOR SURFACE GRID ON BODY USING SCHEPRTIC A,

The contour path ABCDEA represents the body/plane of symmetry intersecticn

line and the paths FGH, LMN the intersections between the wing/body and
canard/body, respectively. To generate the grid in this block structureg
domain using the elliptic equations (1) the necessary boundary data must be
defined on these paths. The appropriate point distribution is of considerable
importance since, ysing the Thomas and Middlecoff approach to compute the
control function p?, it effectively determines the quality of the grid in

the interior of the domain. Grid points on the paths FGH and LMN are computed
from a geometrical intersection routine which ensures that appropriate grid
clusterin? occurs at the leading and trailing edges. To ensure a suitable
distribution of points along the path ABCDEA, information from tne automatic
topology generator is utilised. Descriptors which are associated with features
of the geometry and topology paths are assigned to particular blocks and edges.
For example, the descriptor wingtex is a path of constant x associated with the
trailing edge of the wing. As the contour path along ABCDEA is prescribed, the
point distribution routine within the surface grid generator examines any
topology path descriptor which crosses the contour path in a normal direction.
When two such paths cross, grid points are attracted to both sides of the
intersection. Additional attraction and repulsion of grid points occurs where
corners in the contour path are detected. In this way appropriate grid point



clustering occurs on the path ABCDEA which is consistent with the confiquration
and the topology. In schematic form the idea is illustrated in Figure 6. This
approach, outlined for the body, is applicable to the generation of all surface
grids.

Figure 7 shows a grid in the parametric coordinates for the body of
geometry A using schematic A for the topology. Grid point clustering, so
carefully constructed on the boundaries, can be seen to infiuence the interior
grid points. The grid in physical coordinates along with the component grids
on the wing and canard, is illustrated in Figure 8. The nose of the body is
reasonably well defined using the polar structure in the field topology and the
inserts show the locally embedded C grids around the wing and canard. Figure 9
illustrates the effect of grid point clustering on the component parts of the
outer boundary. This proves essential in achieving a good quality grid in the
field.

FEGURE 7. SURFACE GRID [N PARANETRIC COORDIMNATES FOR THE BODY OF
GEOMETRY A USING TOPOLOGY DERIVED FROM SCHERATIC A

FIGURE 8. GRID OM THE SURFACE DF GEONETRY A SHOWING THE GRID STRUCTURE
OBTRINED FROM SCHEMRTIC A.

FIGURE 3. GRID ON THE OUTER BOUNCARY OF THE FLOU DOMATM.

This method of grid point distribution is applicable to all grids
generated from the automatic topology generator. To iilustrate its use on the
topology generated from schematic B, Figure 10 shows the grid on the surface
of the configuration. The topological differences between grid structures in
Figure B and 10 are evident. Both grids are of a high quality, but perhaps




the grid structure in Figure 8 results in slightly less skewed cells in the

region between the wing and canard. In both cases, the forebody is well
defined.

FIGURE 10. GRID OM THE SURFACE OF GEONETRY A SMOUING THE GR1D STRUCTURE
OBTRINED FROM SCHERATIC B.

FIELD GRID

Once the grids on the surface of the configuration, the plane of symmetry
and the outer boundary have been generated, the grid points in the field are
derived by solution of equation {1}. The source functions pi on the boundaries
are computed from the fixed boundary data and interpolated through the field
ensuring that the p'(i =1,2,3) are consistent on block faces and edges.

Grid control may be enhanced by fixing some internal block baundaries
but this greatly increases the labour of grid generation. Sections of a
field grid-generated using the topology of schematic A are shown in Figure 11.
The component adaptive nature of the grid is evident with locally embedded
grids around the wing and canard and a polar grid around the body. The grid
point distribution in the field can be modified by an appropriate choice of

parameters which modify the grid control functions p? in particular regions
of the domain.

GRID SECTIONS HISHMLIGHTING THE COMPONENT ADA®TLUE
0GY TTRUCTURE.

FIGURE 11. FIELD
TOPOL

As a fina) illustration of the power of our approach we will apply the
method to geometry B. As was already noted, the spacing between the canard
and the wing at the body side and the canard tip leads to a conflict in
the appropriate choice of topology. The geometry at the body side would
indicate a suitable schematic (schematic C) for the topology to be
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Body: (300,0,300), (700,0,300), (300,0,700), (700,0,700)
Wing: (500,0,500), (600,0,500), (500,400,500}, (600,400,500)
Canard: (400,0,550), (500,0,550), (400,200,550), {500,200,550)

This implies that the trailing edge of the canard has the same x value as the
leading edge of the wing. A schematic of the grid on the body side for the
topology is shown in Figure 12. However, if the position of the canard with
respect to the wing is noted at the canard tip, it would appear sensible to
define the.canard trailing edge to be forward of the leading edge of the wing.
This would lead to the schematic A and the appropriate grid structure for
geometry B is given in Figure 13,

FIGURE 12, GRID STRUCTURE ON THE BODY DERIVED FROM GEOMETRICAL SCHERATIC €.

FIGURE 13, GRID STRUCTURE ON THE BODY DERIVED FROM GEORETRICAL SCHEMATIC A,

The additional blocks of grid introduced between the canard and the wing

prove necessary to resolve the region between the two surfaces in the region

of the canard tip. Ideally, this region should be further resolved using a

grid embedding approach or the introduction of regions of unstructured grid(9),
However, the flexibility of our approach enables a wide range of grid structures
to be investigated and the automatic nature of the procedure ensures that the
process can be performed quickly and efficiently.

Sections of the field grid, together with the grids on the configuration,
are shown in Figure 14, As previously noted, the component adaptive nature
of the grid structure is evident.
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FIGURE 14. FIELD GRID SECTIONS HIGHLIGHTING THE COMPONENT MDATTIVE
TOPOLOGY STRUCTURE.

FLOW CALCULATION

In the absence of any strict criteria, the acceptability of a grid is
judged firstly by eye and secondly by its performance with a flow algorithm.
We have endeavoured to prove our grids by computing the flow over the
wing-body-canard configurations using a numerical algorithm for the solution
of the Eul?r equations. The algorithm, based on the ideas of Jameson, Schmidt
and Turkel 0, was developed by the British Aerospace Euler Core Team at
Fitton, Bristol and accepts block structured grids. An example of theoretical
predictions for the flow over the wing in configuration B is given in Figure 15
in which the onset Mach number was 1.2 at an incidence of 6°. For comparison
the experimental data is also presented.

The good agreement with experiment for the two topologies generated by
schematics A and C is evidence that, given an accurate flow solution algorithm,
the grids generated from our method provide the basis for meaningful flow
simulations.

CONCLUSIONS

A method has been presented which is capable of generating component
adaptive grids. The approach has been illustrated using wing-body-canard
geometries but is applicable to a wide range of complex aerodynamic configurations.
The new method of topology generation, combined with the approach taken to grid
control, provide a powerful means of exploring the most suitable topology for a
given geometry. Grid control parameters are available to the user to modify the
grids for particular geometries but the system does not require the user to
partake in long interactive sessions on a work station to generate grids. The

suitability of the component adaptive grids for flow simulation has been
demonstrated by comparing theoretical predictions with experiment.
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FIGURE tS. PRESSURE 3J1STRIBUTION Ot THE WING FOR GEDNETRY R,
CONPARRISON BETUEEN THEORY AND EXPERINENT,
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4.5 GENERATION OF MULTIPLE BLOCK GRIDS
FOR ARBITRARY 3D GEOMETRIES

J.P. Steinbrenner, S.L. Karman, Jr., and J.R. Chawner
General Dynamics Fort Worth Division
Fort Worth, Texas, 76101, USA

SUMMARY

A grid generation procedure has been developed to create complex block grid systems,
beginning with the generation of block surfaces, up to the generation of the full block
volume grids. The multiple block concept is shown to facilitate the gridding of very
complex geowetries and also to allow larger sized grids to be run with a multiple block
Euler solver. The entire grid generation process ls broken into logical steps, each step
described in detail. Three examples of grids systems generated with these techniques are
given, thereby validating the procedurs. Finally, current research topics in gria
generation and future plans are discussed.

INTRODUCTION

One of the traditional impediments to the computational fluid dynamic analysis of
complex aircraft configurations has been the inability to generate a suitable three
dimensional grid efficiently. A suitable grid is defined as one which accurately
describes the configuration geometry and provides sufficient resolution of flowfield
phenomenon (as determined by the local truncation error of the governing differential
equations) while remaining consistent with computer core memory 1limitations. The
material presented in this paper is the result of a three year effort at General Dynamics
to develop a three dimensional grid generation package applicable to arbitrary
configurations. Procedures developed during this period have wmet these goals to a
certain degree, in that an arbitrary grid system may now be generated with the codes in
an efficient amount of time. However, several problems still remain unresolved or
unaddressed.

This paper begins with a brief discussion of the multiple block philosophy used in
the General Dynamics flow solvers. Following this is an overview of the methodology used
in generation of three dimensional grids, including the generation of three dimensional
surface grids, the assembly of surfaces into three dimensional volume grids, and the
assembly of volume grids into multi-block grids systems. The utility of the grid
generation procedure is then demonstrated through discussion of three dimensional grids
surrounding three complex configurations: the F-16 fighter aircraft, a delta wing/body
configuration, and an afterbody of a generic hypersonic vehicle. The nuances particular
to each grid system are summarized, and any difficulties encountered in the overall grid
synthesis procedure are explained. In closing, future requirements and in-work
developments in grid generation are discussed.

MULTIPLE BLOCK TECHNIQUE

The underlying idea of the subject multiple block scheme is to reduce a
geometrically complex region into several smaller, more manageable regions, referred to
as blocks. Each block is represented mathematically by a number of discrete grid points,
ordered in a three dimensional array of constant dimensions. The flowfield may be
divided into any conceivable structure provided that cell to cell matching on block
boundaries is maintained. This does not require that one wall of a given block match
exactly with a wall of another block, only that each cell on an interface wall match with
a cell of an interface wall somewhere in the grid system. The requirement of cell to
cell matching was chosen to eliminate complex interpolations between blocks and to
circumvent flowfield conservation problems across boundaries.

There are numerous advantages to multiple block schemes, and five of the more
significant implications are summarized below.

1. The domain surrounding a complete aircraft or aircraft component is generally
too geometrically intricate to model with a single three dimensional grid. This is the
case, for example, with the undersurface of an F-16 fighter aircraft. The vehicle
topology in the inlet diverter region is such that use of a singla three dimensional grid
would result in considerable skewness of grid 1lines. By utilizing several separate
blocks in this region, however, the aircraft geometry can be accurately modeled while
maintaining nearly orthogonal grid lines. The F-16 grid is described in greater detail
later and also in Raference 1.

2. Por increasingly many applications, a large number of grid points is needed to
resolve accurately the most salient features of the particular flow field. This often
creates storage requirements beyond the memory limitations of the computer. In these
cases another advantage of the multiple block grid scheme becomes apparent. Since
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multiple block flow solvers require that only one grid block occupy core memory at a
time, while the remaining blocks reside on disk or in solid state storage, a greater
total number of grid points may be used if they are divided into smaller, less memory
intensive blocks. This advantage also holds for simple topologies where the grid
generation is not complex but a large number of grid points is still required.

3. Becauss boundary interfaces need to match on the cell level only, it is possible
for two adjacent blocks to have different topologies. Therefore, a combination of grid
topoclogies may be used to model a given geometry, with each block size and topology
ch to prod the relative grid resolution needed. Proper grid resolution is also
more easily controlled by using a large number of blocks by effectively increasing the
number of specified grid points in the system.

4. By breaking the domain into a number of blocks, grid singularities can be placed
on block boundaries and can sometimes be eliminated altogether. The branch cut for an
H-grid about an airfoil, for example, becomes a block boundary if the flow field is
divided into two blocks, one above the airfoil and one below. Hence, no special coding
of the flow solver is necessary to handle the boundary conditions for an internal plane
of the grid.

5. Normally a flow domain is divided into segments which approximately  correspond
to a particular aircraft component such as the nozzle, forebody, wing, or tail. This
simplifies post-processing of the flow field solution. In graphical display, for
instance, not all of the flow field domain must be displayed to view the flow phenomena
about a given component.

Along with the advantages of multiple block systems comes an inherent disadvantage:
that of the difficulty in dividing the domain into suitable blocks. Several competing
considerations come into play when determining sub-domain boundaries, such as relative
clustering, individual block dimensions, and physical block sizes and shapes. The fact
that each block influences the remaining blocks only compounds the problem. Although
work has bequn in developing artificial intelligence techniques to aid in this process,
currently no automated means of subdividing domains exists; the user must rely on
experience, either acquired or borrowed. This continues to ba a serious roadblock to the
very fast general grid generation methods, and is one of the reasons why there is a steep
learning curve for nev users. For each of the applications to follow there was no
definitive way to block the domain, and in the case of the F-16, several attempts were
made before the eventual topology was determined. The multiple block technique is
described in greater detail in Reference 2.

AUTOMATED GRID GENERATION METHODOLOGY

Assuming that blocking considerations, grid dimensions and the general topologies
have been ascertained by some means, the grid generation process continues with the
transfer of the ideas from concept to reality. Over the past three years, a series of
computer programs have been developed at General Dynamics which take the grid system from
beginning to end in a straightforward, logical process. The concepts built into these
programs are described below.

Typically there are several individual blocks in a given system, each block having
three varying computational coordinates. On each block, then, there are six faces, each
face with two varying computational coordinates. Furthermore, on each face there are
four edges, containing only one varying coordinate. Grid generation proceeds from the
inside out, starting with the generation of face edges, followed by the determination of
face surface distributions, and ending with the computation of block volume
distributions. Since each step is influenced by earlier steps, it is sometimes necessary
to jump backward and forward in the process, until the desired grid system is obtained.
Fortunately this is easily done with the existing methods.

The first program used in the process, an interactive surface grid generator,
performs two of the first three tasks. Originally written with a minimal amount of
computer graphics, this program has recently been converted for use on a Silicon Graphics
Iris Workstation, and has been updated considerably to take advantage of the machine's
outstanding graphics capabilities. This improvement alone has cut the surface grid
generation time by at least fifty percent, compared with earlier methods.

In generating a surface grid, there is usually a constrained surface on which the
resulting grid must lie. This is the case, for example, with the grid used to describe
the external geometry of the F-16 aircraft shown in Figure 1. An exception to this is
block interface surfaces interior to a flow domain, where only a degree of smoothness is
necesgary, and not a specific shape. The shape of the constrained surface is often
difficult to represent analytically, and so numerical models are used. Suitable models
consist of a number of patches, each patch containing an M x N number of well-ordered
data points. Collectively these patches are referred to as database networks, and there
are only a few restrictions on their form. Databases may overlap, have different
dimensions, collapse to a point, or close on themselves. Furthermore, database
interfaces do not need to match exactly or to be oriented consistently. Their sole
purpose is to insure that resulting grid points adhere to the surface contour of the
geometry. The F-16 depicted in Figure 1 is an example of a tifty patch database network.
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This network was used to generate the F~16 grid system described later.

Databases are proving to be a convenient method of surface definition, since design
groups often have the ability to generate numerical models of their contigurations. Work
is currently underway to develop an efficient method of transferring configuration data
on a CAD/CAM system to a form usable in the grid generation process, and has already met
with a degree of success.

With an acceptable database of the geometry to be modelled, the surface grid begins
construction. As mentioned, the first grid points to be determined are edges of the
block faces. After selecting one of the six faces to work with, one of that face's four
edges is chosen. The physical shape of the edge is defined by a nuwber of arc segments
chosen by the user and pieced together to form one discrete representation of the
boundary shape, made continuous through the use of exponential splines (Reference 3).
Arc segments may be pulled from databases, input interactively, read from exterior files,
or constructed as straight line or circular arc segments. The user then divides the
continuous boundary into sub-boundaries, placing a chosen number of grid points into each
sub-boundary. Points are distributed by any of several techniques, the most popular of
which is a two-sided stretching function developed by Vinokur (Reference 4&)

When each of the four face edges have been constructed, the face interior points are
given provisional values. Transfinite interpolation is used for this purpose, but with
interpolant functions as suggested by Soni (Reference S), which maintains clustering near
boundaries to a higher degree than conventional interpolants. Although this technique
provides a very good initial solution, it is still usually necessary to use an elliptic
solver to smooth slope discontinuities and to enforce interior point clustering. The
technique employed is the Thomas (Reference 6) scheme, which incorporates the standard
Thompson (Reference 7) elliptic grid method in two dimensions with additional terms added
to account for the curvature of the surface shape. This technique generally creates
smooth distributions of grid points along the constrained surfaces, but the exact
distributions are determined by the choice of weighting functions employed. Two
techniques are available: the Thomas and Middlecoff (Reference 8) method; and a
variation of the Sorenson (Refarence 9) method, extended to three dimensional surface
shapes, rather than planar surfaces.

Successive over-relaxation is used to advanced the discretized equations toward
convergence, and the program allows the user to view the grid as it converges, stopping
the process at any particular time. As a fully three dimensional surface is created, x
and y values are calculated directly from the grid solver, and surface-conforming
z-values are updated through isoparametric interpolation from the database networks.
Since most grids do not 1lie primarily in the x-y plane, it is possible in the gria
program to rotate the grid interactively to an orientation which would allow the surface
shape ( 2z ) to bea calculated as a function of x and y. When the grid cannot be rotated
to an orientation where the surface is not double valued anywhere (more than one z value
for a given x and y), as is the case for many internal flow applications, two possible
remedies exist. First, the user may subdivide the surface into a number of subfaces,
solving on each subface in an acceptable orientation, until the entire face is
sufficiently defined. Sacondly, the user may engage an alternate elliptic solver - one
written in parametric rather than physical variables - whose parametric coordinates
correspond te the M and N indices of the database. This technique is described in detail
in Reference 10. The latter method allows the entire face to be solved at once, and is
considerably faster than the physical variable solver, because the time-consuming search
algorithms in the z-interpolation routine are no longer necesaary. Unfortunately, the
utility of this technique depends on the ability of the surface to be represented by a
single database, which is sometimes difficult. However, the combination of both
techniques have allowed any surface grid encountered to date to be created without
significant difficulty.

There are many other features incorporated into the surface grid generation program
which add to the code's speed and efficiency. For example, the latest versions allow all
six walls of a given block to be generated in one interactive session, maintaining point
continuity on all twelve block edges as the block is generated. This eliminates the
cumbersome and confusing task of copying boundaries of one wall into a boundary of
another adjacent wall and then assembling all six faces together properly. Also, as
mentioned earlier, it is possible to break a face into any number of subfaces, which Rray
either overlap, coincide or neither. By so doing a certain region of the face may be
fixed in space while the other points move toward convergence, essentially allowing
non-rectangular computational regions to be generated.

Experience has shown that an interactive surface grid generation scheme affords the
user a very high degree of control over grid point placement, and extensive graphical
capablilities add to the ease in which a grid may be constructed. M ge wind dded
in the latest versions display diagnostic information which reduces confusion and
eliminates the duplication of work. A sample screen from an IRIS Workstation during a
typical grid generation session is supplied in Figqure 2 indicating the layout of the
diagnostics. Output from this code are files which contain all six walls of a given
block, and the entire process is repeated for each of the remaining blocks in the system.
The interactive grid procedure is 4 ted in Refersnce l1l.

Distribution of grid points on the interiors of each block grid is the final step in
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the process. As in surface grids, it is necessary first to assign provisional values to
interior grid points bafore an elliptic solver is cslled. Tranafinite jinterpolation is
again chosen, with interpolants calculated in the manner of Soni (Reference 5). Again,
this scheme usually provides a good degres of clustering throughout the grid, but local
regions of crossed grid lines, corresponding to negative values of the three dimensional
Jacobian, sometimes result, particularly when there are sharp corners or very large
degrees of clustering on the boundaries. When negative cell volumes exist, there are
several options available, all of which utilize the three dimensional elliptic grid
generation equations popularized by Thompson et al. (Reference 7). The firast option is
to calculate the cell volumes throughout the grid, flag the negative volumes and volumes
which border the negative volumes, and to solve the elliptic equations at all of the
flagged points. In this option, weighting functions are set equal to zero. This nethod
will eliminate all of the negative Jacobians, but will not eliminate discontinuities in
grid line slopes which occur from transfinite interpolation. If the discontinuities are
severe, a second option is used. Here, weighting functions which correspond to the
current grid point locations are calculated, with the mixed-derivative terms eliminated
to allow for a greater degree of smoothness. The equations are then solved iteratively
towards convergence. Still another tachnique is used when neither method above proves
adequate. The GRAPE technique, developed by Soremson (Reference 9), will allow for an
exact grid point spacing and transverse angle specification at the boundaries of the six
walls of the block. This method is particularly attractive when strict orthogonality is
desired at one or several of the block walls, or when very tight clustering is needed at
the walls. All of the three dimensional techniques described employ an successive
over-relaxation scheme as a means of advancing the numerical solution. An Approximate
Factorization scheme is also available, but has not yet been found to be superior to the
point relaxation scheme.

None of the three dimensional schemes described above will produce acceptable
interior grid point distributions for every conceivable set of block walls. In fact, it
is doubtful that such a scheme will exist in the near future. For this reason, a greater
emphasis is placed on careful generation of surface grids which will not force the
interior grid lines to follow unreasonable paths. This is possible with the surface grid
generation program, which allows boundaries or walls to be created and recreated quickly.

The block grid generation process is repeated for each individual block in the
system, each block generated independently. Consequently, the resulting block system
generally exhibits slope discontinuities across block boundaries. The discontinuous
lines can be controlled to some degree by judicious grid point distributions on adjacent
faces, but it has been observed that slight discontinuities in slope present no major
problems, particularly when using a finite-volume flow solver. Despite the efforts to
develop an all-encompassing grid generation package, certain problems still exist, and
are discussed later. Future research and development topics to further aid in the grid
process are discussed later as well.

APPLICATIONS

The three examples in this section, presented in chronological order of generation,
illustrate the class of configurations that can now be treated on a fairly routine basis.
These examples were created as the grid generation programs evolved, and in fact
influenced the structure of the programs as new problems were uncovered.

F-16 Fighter Aircraft Griq

A three dimensional grid was generated for an Euler analysis of the F-16 fighter
aircraft. The grid, which models the left half of the aircraft, contains twenty blocks
with a total of 530 000 grid points. All components of the vehicle are simulated
including the wing, body, horizontal and vertical tails, inlet, nozzle and ventral fins.
The wing tip missila and missile launcher, however, are not simulated. The database used
to define the F-16 surface geometry is displayed in Pigure 1. A detailed discussion of
the grid generation and Buler analysis of this configuration can be found in Reference 1.

The first step in generating this grid was development of the blocking structurae.
The geometry was easily divided into upper and lower domains, with the wing and
horizontal tail residing in the interface plane between the two domains. In order to
maintain cell to cell matching across this horizontal block boundary the grid topology
for both domains needed to be the same. This became a considerable restriction in
developing acceptable block arrangements for both domains.

The H-grid topology of the lower domain was selected based on the blocking
requirements of the inlet diverter and ventral fin regions. Just aft of the main
inlet face the geometry was simulated as shown in Figure 3. The diverter section
above the inlet was discretized with one very small block which collapsed i to the
environmental control system inlet. The H-grid which ran alongside the inlet
continued down the fuselage to the ventral fin area where the fin was aligned wiih the
block boundary. The entire lower domain, shown in Figure 4, contains thirteen
blocks. Because of the complexities of the geometry, it could not be combined into
one contiguous block.

The upper domain, however, was generated in one contiguous block and then divided
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into the seven blocks outlined in Figure 5. Generation of the upper domain H-grid was
simplified relative to the lowver domain because there were no fins or inlets in this
region. The sizes of the blocks vere chosen to optimize the core memory usage. A view
of the upper surface grids is shown in Figure 6.

When this analysis was begun, the surface grid programs were still under
development. At that time, the code required that each face of a given block be made
individually, and that shared boundaries be written to a file and read in for all
adjoining faces. Also, the program had no substantial graphics capabilities. At the
same time, the corresponding block Euler flow solver was under development. These
problems combined with the geometric intricacies caused the grid to be generated at a
very aslow pace. Consequently, nearly a full-man year was needed to generate the complete
twenty block grid system.

Delta Wing/Body Grid

Later, a three dimensional grid was generated for an Euler analysis of a supersonic
delta wing configuration. This configuration, shown in Figure 7 was obtained from
References 12 and 13. The geometry included a thin delta wing, slender body and a
vertical tail. Lateral and longitudinal stability derivatives were to be computed from
the Euler flow field solution. Since there was no left-right symmetry in the flow field,
the entire aircraft was modelled. The complet2 multiple block syster contains four
blocks and 200 000 points. This configuration is geometri-ally simpler <than the F-16
aircraft, and at the time of generation, the grid generation codes were more advanced and
the block Euler code was fully operational.

The block arrangement was also simple compared to the F-16 due to the lack of
propulsion system components and auxiliary control surfaces. The four blocks are
arranged to discretize the four quadrants about the aircraft. The wings and the vertical
tail are simulated as part of the interface planes between the upper and lower blocks and
the symmetry plane is the natural boundary between the left and right blocks. The
farfield boundaries werae positioned close to the body because the Euler analysis was to
be done at supersonic conditions. The outer boundary is extended upstream of the nose
just far enough to capture the bow shock and the downstream face of the grids is
positioned at the end of the body and vertical tail.

Figure 8 shows the boundaries of the block of grid used to describe one of the upper
quadrants. A location on the body at midwing les arbitrarily selected as a face boundary.
The grid in the cross planes is then established as an 0-grid while the grid in the
trangverse planes is a C-grid. This type of topology results in a singular line of grid
pointa extending forward of the nose. The complete grid on five of the six faces of this
block is shown in Figure 9. Generation of the lower quadrant block proceeded in a
similar manner. Then, the symmetrically oppeosite blocks were generated by reflection of
the two existing blocks.

Less than a man-week was needed to generate this block system, and there are several
reasons for this significant reduction in manpower. The foremost region was the large
amount of experience gained from generation of the F-16 grid which was directly
applicable to this geometry. Also, an advanced version of the grid generation procedure
was available which employed extensive interactive graphics on an IRIS Workstation. The
biggest single reduction in manpower was due to the simplicity of the geometry, but the
program enhancements helped considerably as well, probably speeding the entire process up
by an order of magnitude.

Hypersonic Vehicle Afterbody Grid

A three dimensional grid was generated for Euler analysis of the afterbody and
nozzle region of a generic hypersonic vehicle. The geometry of this symmetric region is
defined by the database shown in Figure 10. The afterbody has a rounded cross section
which necks down to a sharp trailing edge. The underside of the expansion ramp is
aligned at twenty degrees with respect to the horizontal. The engine module on the
underside of the afterbody has been approximated by a thin walled rectangle with
sidewalls that extend approximately one half the length of the lower flap. The outflow
boundary of the grid is located one afterbody length downstream of the ramp end and the
farfield boundaries are conically shaped.

The first step in generating this grid was to develop the blocking structure. The
blocking arrangement that resulted was based on three consjderations. The first issue
dealt with was the differing shapes of the inside of the engine module and the exterior
of the afterbody. The rounded afterbody shape made a C-grid in this region most
advantageous. However, in order to avoid a line singularity at the center of the engine
flowfield, an H-grid was chosen over a C-grid for the internal region.

Having defined the blocking based on grid topologies the next issue considered was
the block matching in the circumferential direction. The connection of a C-grid to an
H-grid as shown in Figure 11 would require that the grid points used on the perimeter of
the H-grid match with the inner radial boundary of the C-grid. The engine module
presented a particular challenge here. Due to the requirement of point to point matching
between blocks, block boundarjies were set on the corners of the engine module and
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extended radially outward to the farfield boundary. These block boundaries required that
the number of points on the perimeter of the internal H-grid match the number of points
on the inner radial boundary of the C-grid. Based on these considerations the external
grid was blocked into three circumferential sections corresponding to the top, side, and
bottom of the engine module.

The tinal issue consiiasred in blocking this afterbody grid was one of number of grid
points per block. At this point the grid had been divided into a minimum of four blocks:
a rectangular H-grid surrounded by three sections of C-grid. The total number of grid
points was limited to 400 000 in order to keep flow solver run times at an acceptable
level. Considerations of geometric accuracy led to the decision to use 126 points in the
streamwise direction (96 points up to the end of the afterbody), 81 points in the
circumferential direction, and 21 points in the radial direction In ovder to satisty
computer core memory limits the number of points per block needed to be approximately
30 000. This was easily accomplished by adding block boundaries at two streamvise
stations, namely at the end of the lower flap (46 points) and at the end of the upper
flap (51 points).

The grid for this afterbody has been divided into twelve blocks as shown in
Figure 12; one radial block boundary separates the H- and C-grids, two circumferential
block boundaries define the shape of the engine module, and two streamwise block
boundaries enforce the 1limit of grid points per block. The blocking process described
above was not very difficult but still consumed approximately two days since it was all
done by hand. Much of the delay was a result of selecting the proper number of grid
points per block. The blocking decisions were simplified by the smooth lines of the
afterbody gecmetry. A graphical procedure on a workstation employing some form of
artificial intelligence could have cut the time for this task considerably.

The next step in creating this three dimensional grid was generation of the two
dimensional surface grids for each block. In order to assure grid line slope continuity
across block boundaries the entire external c-grid up to the trailing edge of the
afterbody (three of the twelve blocks) was generated as one block. At the time of this
analysis a new feature had been added to the interactive grid generation procedure which
allowed for all six faces of a block to be generated simultaneously. This feature proved
to be extremely helpful in assuring point continuity on the face edges. The topology for
the upstream outer block is shown in Figure 13 along with the associated grid indices.
Specifically, generation of the upstream face will be described since it was complicated
by the concentration of points in the engine sidewall region due to the internal H-grid.

The boundaries of the upstream face are shown in Figure 14. The farfield and
symmetry boundary shapes were selected based on consideration of farfield boundary
condition influence on the body whereas the engine module and afterbody shapes were
obtained from the database shown in Figure 10. To illustrate the evolution of a
particular wall, a close-up of the circled region in Figure 14 is presented in
Figure 15a, with only the boundary points displayed. The grid@ on this face was
initialized using an algebraic transfinite interpolation scheme yielding the grid shown
in FPigure 15b. Obviously, the grid 1line crosaing, lack of resolution of the corner,
non-orthogonality at the corner, and small cell sizes are unacceptable. The reason for
the problems in this case are the highly stretched and compressed boundary point
distribution (multiple length scales) and the discontinuities in the boundary shape.
Since boundary orthogonality and clustering in the corner were deemed necessary, the
Sorenson weighting functions were used to solve the grid equations, and resulted in the
grid shown in Figure 15c. Resolution of the corner and orthogonality has been obtained
but severe pinching of the grid lines has appeared in the corner. This pinching was
relieved by running the grid solver using the Thomas and Middlecoff weighting function
resulting in the final grid shown in Figure 15d. Once this upstream face was completed
work on the remaining five faces of this block continued. This process required several
iterations with the grid solver, changing the weighting functions from one formulation to
the next in order to obtain the described grid point distribution. The interactive
graphics employed in the grid generation program allowed the user to view the grid as the
solver progressed at each iteration. This avoided the continuation of bad solutions or
gave the opportunity of stopping the solution when a good solution was obtained.

As each face of the three dimensional grid was completed its boundaries were written
to the corresponding boundaries of the connecting faces, simplifying the generation of
these grids. Eventually, then, the last face worked upon already had all four of its
boundaries defined by the completion of the adjacent faces. A viev of the four of the
six faces of this complete grid block is shown in Figure 16. Generation of the remaining
blocks of the twelve block grid procesded in a similar manner.

CONCLUSIONS

The viability of the present methods to generate multiple block grid systems has
been verified for only thres geometries in this paper, but has been used to generate
numerous other systems as well. Viability, of course, can only be ascertained after the
grid is used in a flow solver, but with the techniques .in this work, a reasonable degree
of confidence can be obtained before the grid is taken to task. An additional program
has been developed as a post-processing tool in grid generation to further increase the
grid confidence. This program allows the operator to load in and scroll through a grid
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block, one cowputational plane at a time, adjusting the scrolling speed as desired. This
feature makes 1t possible to digest a large amount of information about the grid in a
short amount of time, without cluttering the screen with unneeded information. The
general continuity of the grid lines can also be determined with this program in a short
period of time.

Although a grid system could be generated for almost any imaginable geometry with
the present scheme, certain geometries still present a great amount of difficulty.
Reasons behind the difficulties are stated below. First, the technique of breaking a
domain into blocks is not easily taught, and becomes a formidable task for complicated
domains regardless of the user's expe-ience. Secondly, the total time needed to generate
a grid system has been reduced considerably over the past few years, but is not yet to
the level that makes a very fast (2-3 days) analysis of a configuration possible. Part
of this particular problem is due to the speeds of the computers used, but there is also
a need for further automation of the grid generation process. Finally, when viewing a
three dimensional grid, it is difficult to determine if everything is as it is expected
to be, especially with grids of large dimensions. This becomes even more difficult with
multiple block systems, where grid boundaries connect to others in a pre-specified
manner.

These problems have been the primary impetus for continued development of grid
generation methods at General Dynamics. As mentioned earlier, artificial intelligence
techniques have begun to be used to assist in the domain blocking proc:dure, These
methods may not yet be ready for use in three dimensional block grids, but a set of rules
in determining blocking boundaries are finally beginning to be formulated. Currently,
after determining block boundaries, a file is normally created by the user which defines
the connectivity of the block grid system. This file is then input to the flow solver,
and the grid is ogenerated independently. Work is already underway in developing a
program to allow the coan-=tivity file to be created in a interactive graphical
environment. Conceptually, this program would output two files - one each for the flow
solver and the surface grid generator. The corresponding connectivity file would be
attached to the grid generator, and the entire block system would be generated, with
connectivity automatically maintained as specified by the tile. This alone would reduce
the throughput time for grid generation considerably. By having a connection file, it
would also be relatively easy to use three dimensional elliptic grid schemes in the
entire domain, with continuity across block boundaries. Block continuity is a ¢ blem
that has been addressed and solved by some other researchers, but has not yet ‘een
implemented into the present sacheme. Finally, as the size and complexity of three
dimensional grids increases, so will the reliance on graphical techniques to check and
validate resulting grids. Consequently, work has bequn in developing improved graphical
programs to view grids. It is probably not unreasonable to expect {mplementation of the
ideas above to result in another order of magnitude reduction in the time needed to
create a complex block grid system.
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Figure 2. Sample Screen from the Interactive Grid Generation Procedure
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ACTUAL SURFACE GRIDS
GENERATED FOR INLET-
FUSELAGE SECTION

3 BLOCKS SIMULATING
THE BLOCKING OF THE
INLET-FUSELAGE REGION

Figure 3. F-16 Inlet Diverter region Grid and Multiple Block Structure

Figure 4. F-16 Lower Domain Thirteen Block Structure




Figure 5.

F-16 Upper Domain Seven Block Structure
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Delta Wing/Body Four Network Database

Figure 7.

Delta Wing/Body Upper Right Quadrant Block Face Boundaries

Figure 8.

Delta Wing/Body Upper Right Quadrant Grid (reduced)

Figure 9.
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Generic Hypersonic Afterbody/Nozzle Three Network Database

Figure 10.

Generic Hypersonic Afterbody/Nozzle H-Grid to C~Grid Interface

Figure 11.
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SUMMARY

This paper describes experiences at the NASA Langley Research Center generating
grids about a cranked-wing fighter aircraft configuration. A single-block planar grid
about the fuselage and canard and used with a finite-difference Navier-Stokes solver is
described. A dual-block nonplanar grid about the complete configuration and used with a
finite-volume Euler solver is described. The very important aspect of computing the
aircraft surface grid--starting with a standardized model description--is also
described.

1. INTRODUCTION

In 1984 an effort was initiated at the NASA Langley Research Center to compute
grids and flow fields about a complex fighter-type aircraft confiquration consisting of
the following four components:

1. an area-ruled fuselage with a canopy and integrated engine inlet,
2. a bi-convex swept canard,

3. a bi-convex 70-20 cranked wing,

4. a swept vertical tail.

An orthographic view of the four components is shown in Fiqure 1, where each component
is described by an ordered set of cross sections relative to a primary axis.

The initial step for flow field computation about a configuration such as the
fighter model described above is to establish the number, placement and topology of grid
blocks that cover the physical domain. In our experience the best way to approach the
problem is to sketch the configuration and outlines of the physical blocks. In deciding
on the block structure and topology, it is important to consider the type of flow calcu-
lations that are to be made and the characteristics of the solution algorithm. The grid
itself with its concentrations and dispersions is not of great concern at this early
stage, but the connecting of blocks and the singularities in the blocks are important.

The second step is the detailed computation of the grid on the configuration
surface subject to the chosen topology. This implies that grid points will likely have
different locations from the defining cross section points. Also, grid curves on the
configuration may have a different orientation from the defining cross sections. We
have used a bi-cubic representation (Coons® patches) and corresponding software that has
been developed at the Langley Research Center to mathematically represent aerospacecraft
(Refs. 1 to 3). The intersection of components and the grid curves on the component
surfaces are computed from patch-plane intersections where the planes are user pre-
scribed. The patch-plane intersection capability is also a part of the Langley surface
definition software. In order to use the surface definition software for grid genera-
tion, it is necessary to write a driver code to call the surface generation code, and to
manipulate and manage data for the chosen topology.

Once the configuration surface grid is determined, the next step is the generation
of the surrounding grid for each block. Our general approach is to work from the con-
figuration surface out to the exterior far field boundaries. The remaining steps are
the flow field computations and their analysis. A point that must be considered here is
that logic for the grid generation must be incorporated into the flow field solver and
subsequent visualization or analysis programs.

Two grid topologies are described herein. The first grid has a single block
(Figure 2) with no singularities. This grid extends from a point just behind the nose
of the configuration back to where the the engine inlet begins and is used with a
finite-difference technique to compute viscous supersonic flow. The second grid
(Pigure 3) is a dual-block grid above and below the canard and wing. This grid topology
which is the conception of the third author has a polar singularity at the nose of the
configuration and a line singularity (Ref. 4) around the fuselage at the beginning of
the engine inlet. This grid is used with a finite-volume technique to compute inviscid
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supersonic flow about the complete configuration with flow into the inlet. Individual
discussions are devoted to our experiences with each grid structure. The surface grid
generation for the fighter configuration is similar for both grids, and a description of
our experiences is presented.

2. SINGLB-BLOCK PLANAR GRID

A single-block planar grid is constructed. The grid is used with a fin:te-
difference Navier-S5tokes solver (Ref. 5) to compute viscous supersonic flow vver the
forward part of the fighter configuration (fuselege and canard, FPigure 2). The Navier-
Stokes solver integrates governing equations in a computational coordinate systeam
related through the Jacobian transformation to the physical domain (Ref. 6). The
solution procedure is a time-split MacCormack technique, and no singularities are
tolerated since the Jacobian derivatives appear explicitly in the equations of motion.
For this reason, planar grid surfaces are started downstream of the nose of the fuselage
and continue past the canard.

The computation of grid points on the fuselage and canard are discussed under
boundary grid generation elsewhere in this paper. The outer boundary in each plane is a
semicircle with increasing radius in the downstream direction (conical surface), and
each plane is divided into an upper and lower part. The two-boundary technique (Ref. 7)
with clustering distributions is applied to the upper and lower portions of each plane.
The clustering is designed to concentrate grid points near the fuselage and canard sur-
faces and toward the canard-fuselage intersection. For the application of the two-
boundary technique, the inner boundary is at the fuselage and the outer boundary is the
circular segment. The left boundary is the symmetry line and the right boundary is the
surface containing the canard. The left and right boundaries are reversed for the lower
grid. Figure 2 shows the grid topology and selected grid surfaces. Figure 4 shows 2
solution of the pressure on selected grid surfaces at Mach Number = 2.5, Reynolds
Number = 65,000/Meter, and 0 degree angle of attack using 278,800 grid points.

This grid topology and solution procedure were our first attempts to solve super-
sonic flow over the fighter configuration. There were many lessons learned. The first
lesson is that the grid should not be planar. Grid lines should be aligned with the
leading and trailing edges of the lifting surfaces. We believe that such grid alignment
improves accuracy in the application of boundary conditions, relaxes the requirement for
artificial damping, and decreases the coding complexity. A second lesson is that
solving the Navier-Stokes equations with a large number of grid points (200,000 and
more) is extremely taxing on the present generation super computers. At the present
time there is much more potential for routinely solving the Euler equations about
complex three-dimensional geometries as {s demonstrated in the next section.

3. DUAL-BLOCK GRID

For the fighter configuration shown in Figure 1 a multiple-block Cl-continuous grid
is constructed for inviscid compressible flow computations (Euler equations) using a
finite-volume technique (Refs. 8 and 9). An initial requirement is for the grid to
conform to the canard and wing edges. A single-grid topology would result in a highly-
skewed grid (Fiqure 5), and it would be difficult to concentrate grid points at the apex
region of the wing where vortex flow is generated. A dual-block grid topology (Figure
6), having an inner grid which covers part of the wing and fuselage, has a singularity
grid curve on the fuselage and a bounding-block grid curve along the leading edge of the
highly swept part of the wing. This topology is considered to be optimal for the flow
field conditions and is suitable for the finite-volume technique. Once the topology has
been chosen, the next step is the computation of the grid on the configuration surface
which is discussed elsewhere in this paper. However, at this point, distributions for
grid clustering on the configuration surface must be established. For the fighter con-
figuration there is clustering near the intersections of the lifting surfaces and the
fuselage and the leading and trailing edges of the wing and canard. Also, there is a
clustering on the wing surface from the wing crank to the trailing edge of the wing.
Figure 7 shows the topology of the dual-block grid relative to the computational domain,
and Figure 8 shows the surface grid in an exploded view.

The exterior grid generation about the fighter configuration is based entirely on
transfinite interpolation and is therefore computationally efficient. Transfinite
interpolation is the Boolean sum of several univariate interpolations in which distribu-
tion functions can be embedded for grid clustering (Ref. 10). Usually the interpola-
tions are low order polynomial functions such as hermite cubic functions (Ref. 4). The
process ig to work from the configuration surface outward, computing subgrids and
"gluing® them together with Cl continuity. For each subgrid, some of the six bounding
surfaces are obtained from the configuration surface grid, some are obtained from
previously computed adjoining subgrids, and some are constructed from simple analytic
functions. Cl continuity is maintained by using derivative information as well as grid
point locations, and Figure 3 shows selected grid surfaces. For the flow field computa-
tions that have been made thus far, there have been 264,000 grid points. A typical
solution, showing the coefficient of pressure on selected surfaces at Mach number 2 and
an angle of attack of 4 degrees is shown in Figure 9.
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4. AIRCRAFT SURFACE GRID GENERATION

The fighter configuration shown in FPigure 1 has a complex fuselage with sharp
corners, a swept engine inlet and a deep cavity above the engine inlet (boundary-layer
diverter region). The canard and tail geometries are simple, and except for the
70-20 degree crank, the wing geometry is simple. An added complexity is that the root
leading edge of the wing is near the center of the vertical side of the fuselage, and
the root trailing edge is near the top. For the single block grid (Pigure 2) the most
complex part of the configuration is not considered. Por the dual-block grid
(Pigure 3), the boundary~layer diverter region is omitted which requires the reconstruc-
tion of new defining cross sections in the engine inlet region. It is anticipated that
the boundary-layer diverter region will be re-introduced in the future as an additional
grid block.

Bach component (fuselage, canard, wing and vertical tail) is mathematically repre-
sented by ordered sets of Coons' patches as described in references 1 and 2. A Coons'
patch is a bi-cubic function with two parametric independent variables. The defining
parameters for a patch are: (1) coordinate positions of corner points; (2) derivatives
of coordinates with respect to the parametric variables at the corners; and (3) cross
derivatives of the coordinates with respect to the parametric variables at the corners.
There is a maximum of forty-eight parameters for each patch. The input to the Langley
surface definition software are coordinates along cross sections at stations along each
component. Corresponding points on neighboring cross sections become the corners of
patches, and it is advisable that the distribution of input points be approximately the
same along each cross section. Cubic splines are fitted along the cross sections
through the defining points and across the cross sections through the defining points.
Also, the parametric variables are defined along and across the cross sections
respectively, and derivatives with respect to the parametric variables are evaluated at
the defining points. At the present time the cross derivatives are set equal to zero in
the Langley software. Coordinate positions interior to a patch are computed by evalu-
ating along the parametric variables and Figure 10 shows an orthographic view of the
fighter configuration which has been densely interpolated and presented as a solid.
Grid points are computed along curves which are the intersections of planes and the
patch definitions. A grid curve can cross several components if the grid topology
requires it, »nd the parameters defining a plane (coordinates of three points) are
software iupu... The [-tersection ot components (fuselage-canard, fuselage-wing, and
fuselage-tail) are computed using the plane-patch intersection software, where the
planes are made perpendicular to the x-axis. A search approach is used to find the
beginning and end of the intersections. Pigure 11 shows the fuselage grid and inter-
sections for the canard and wing, and FPigure 8 shows the entire surface grid from an
exploded view.

Following are two important lessons that were learned during the modeling of the
fighter configuration.

1. The initial input description was too sparse for the complex detail of the
fuselage. More cross sections, particularly in the canopy region and engine inlet
region, were required. Also, more defining points per crosgs section than initially
thought were required.

2, It was necessary to break the fuselage and wing into three sub-components and
two sub-components, respectively. The fuselage was divided at the cross section where
the canopy starts to appear and the cross section where the engine inlet begins to
appear. The wing was divided at the crank. These divisions were made because of the
first derivative discontinuities on the surfaces that are not acceptable in a cubic
spline computation.

The decision to make these changes was reached by observing plots and images that
showed bulging where it should not be and smearing where there should be a sharp change
in curvature. It should be noted that using a high order model representation such as
the Coons' patch description is an effort to minimize the amount of information that
must be user provided and discretely stored. This is constrained, however, by the
complexity of the model and the level of detail that is reguired. Also, it should be
noted that computer graphics is an essential tool for evaluating the grid generation on
the configuration surface.

The grid topology requirements on the fuselage and canard are similar for both the
single-block grid and the dual-block grid. Grid curves on the fuselage are in planes
parallel to the defining cross sections. For the single block grid topology, grid
curves across the canard are in parallel planes and are obiique to the canard leading
and trailing edges. For the dual-block grid topology, grid curves conform to the
leading and trailing edges of the canard and the grid surfaces are not planar. This is
also true for the vertical tail.

Grid curves are obtained using the plane-patch intersection capability of the
Langley surface definition software. A grid curve consists of a set of pointsg collected
from the entire array of patch intersections with a plane. Duplicate points are
removed, the points are ordered and their approximate arc lengths along the grid curve
are computed. Note that the number of points to represent a grid curve is user con-
trolled and usually should be greater than the number of grid points that is desired
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along the curve. Couputation and clustering of grid points is obtained through an arc
length redistribution along the grid curve followed by interpolation. The process is
repeated for each grid curve.

5. CONCLUDING REMARKS

Based on our experience with the cranked-wing fighter configuration and other
recent investigations (Refs. 12 to 14), it is presently feasible to generate composite
block grids and compute Euler flow computations about complex three-dimensional con-
figurations. The grid generation procedure that we and the investigators in reference
13 have used is totally algebraic. Other investigators have used a combination of
algebraic and differential grid generation (Refs. 11,12 and 14). The grid generation
software for our computations is experimental and aimed at one geometry type. Efforts
are under way at Langley and elsewhere (Ref. 15) to generalize three-dimensional grid
generation software.

Planning the block structure and topology is the most important grid generation
step. Both the physical requirements (shocks, boundary layers, sepatration, etc.) and
the solution technique requirements (singularities, skewness, etc.) must be resolved.
Also, the alignment of grid curves with boundary surfaces can affect the accuracy of
boundary conditions and the complexity of solution software. 1In our planning we have
attempted to minimize the number of grid blocks to cover a domain and consequently
simplify the software logic.

The configuration surface representation must be accurate and robust for extracting
grid data. We have found that a large percentage of the overall effort must be devoted
to surface representation and grid computation on the configuration surface.

Generating the surrounding grid for a three-dimensional configuration using trans-
finite interpolation is straight forward after proper planning and configuration surface
grid generation. The primary aspects to keep in mind are the clustering of grid points
and the continuity of grid curves across grid blocks. We have found that computer
graphics is an essential tool in gererating b“oth the configuration surface grid and the
surrounding grid. Our dicection is to move toward doing these tasks in a workstation
environment.

The finite-volume technique is very suitable for Euler flow computations on
multiple-plock yrids. Solutions for the dual-block grid (264,000 grid points) about the
fighter configuration can be obtained on the VPS-32 (CYBER 205) in less than one hour.
Our experience with a finite-difference Navier-Stokes solver about a part of the fighter
configuration is that it is extremely time consuming and appeared to be very grid sensi-
tive. The availability of computer memory is adequate for Navier-Stokes solutions of
complex three-dimensional grids, however, the CPU speeds are not adequate. In our case
many hours were required to obtain only one solution over a part of a configuration.
Consequently, we feel that we can make the most progress in the near future by pursuing
geometric complexity of configuration surfaces and Euler flow compu*ations.
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Figure 4.- Pressure Solution on Sfngle-Block Grid.
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Figure 8.- Surface Grid in Exploded View.

Figure 9.- Pressure Coefficient on Selected Surfaces for Fighter
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Figure 10.- Shaded Orthographic View of Fighter Configuration.

Figure 11.- Fuselage Grid and Intersections.
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P.O. Box 80 11 60, D-8000 Miinchen 80, FRG

SUMMARY

The grid generation process for a realistic and complex fighter type aircraft will
be described. The method is based on the solution of biharmonic equations and uses a
single block concept. Only a few user specified input parameters are necessary for the
construction of the space grid and therefore this grid generation system is very simple
to handle. The grid is intended for calculations with an Buler code at transsonic and
supersonic speeds.

1. INTRODUCTION

The automatic generation of computational grids around aerodynamic configurations
becomes more and more important the more complex the body immersed in the fluid is.
While the flow algorithm remains principally unchanged, the grid has to be adapted pro-
perly to every new geometry. Therefore, the grid generation process is the most time-
consuming part of a flowfield calculation for a realistic and complex configuration,
not in terms of computer time but in terms of man power.

A grid generation system for general, complex geometries should be reliable and
simple to handle. This means that grids of reasonable good quality can be generated
automatically with only a very small number of user specified parameters. From expe-
riences with grid generators for automobiles, ducts, wings, wing-fuselage combinations
and multi-finned missiles it seems that this can be done by using the biharmonic equa-
tion as a grid generation system. The whole grid construction is controlled only by the
boundary conditions at the surface of the configuration and at the farfield boundaries.
This formulation simplifies the procedure considerably and as far as we know, it is the
simplest method reported so far.

To show the capabilities of this concept, the grid generation process for a real-
istic fighter type aircraft will be explained. The main features of this configuration
are a fuselage with belly intake, cranked delta wing, canards and two lateral stabi-
lizers. Because of computer storage limitations, a fine modelling of the intake region
(boundary layer diverter, horizontal splitter plate and vertical plate, separating the
left and right engine duct) and installed external stores are not included. This grid
with approx. 500 000 points was subsequently used for several flow calculations with an
Euler code at transsonic and supersonic speeds.

2. GRID STRUCTURE

The first step in every grid generation process is the choice of the grid topology
best suited for the given configuration. While C-type or O-type grids are ideal for
simple wings, it becomes more difficult or even impossible to treat complex geometries
with this grid types. For this reason, we decided to use an H-type grid structure which
is very flexible and can be adapted to very complex configurations by the use of inte-
rior branch cuts or by using a multi-block approach. Pigure 1 shows the general lay-out
of the grid where the outer.boundaries are a simple rectangular box.

There are two different concepts for the generation of grids around complicated
configurations. In a multi-block approach (cf. /1/, /2/, /3/) the entire flowfield is
subdivided into a number of simple blocks and the grid is generated separately in every
block. The main problem of this method is the treatment of the block boundaries. At the
present time there seems to be no automatic scheme for the subdivision of the domain,
and therefore the exact location of the block boundaries has to be evaluated in a time
consuming trial and error process. To avoid these difficulties, we decided to use a sin-
gle block grid structure. To resolve the complex configuration properly, several inte-
rior branch cuts had to be introduced. This leads to a number of singular points called
lost or fictitious corners (cf. /4/) on the surface of the configuration. Figure 2
shows the structure of the surface grid in the computational space. We can see, that in
this concept the configuration and not the whole flowfield , has to be divided into
several blocks. The computational domain is a single block from which the cells, which
lie inside the configuration, have to be excluded.
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3. SURFACE GRID GENERATION

3.1 GEOMETRY INPUT

The input requirements are as simple as possible. Since the configuration is
assumed to be symmetric about the plane y = O, oniy one half is considered.

Fuselage:

The fuselage is given by wire frames expressed by coordinates x, y, 2z for each
frame. Usually these frames are given at x = const. stations. In order to identify the
intake geometry correctly, the fuselage is divided into two parts, the forebody and the
afterbody (Pigure 3). The last cross section of the forebody is partly identical to the
first section of the afterbody. The latter consists of the last section of the forebody
with the addition of the wire frame forming the intake.

Each cross-~section is accompanied by two integers marking the lower and the upper
fuselage block houndary points of the section. The lower block boundary line of the
forebody ends at the last section of the forebody and should coincide there with the
corner formed by the intake frame cutting point with the identical part of the fore-
and the afterbody. The upper block boundary line should not have a jump at the common
part of the fore- and the afterbody. The lower block boundary line of the afterbody
should start at the corner of the box type intake. We decided to place the upper block
boundary line outboard of the vertical V-stabilizer. Finally the coordinates x, y, ¢ of
the fuselage nose cap are given in random ordering by input. In the present case the
fuselage is pointed, and the nose cap can be prescribed by a plane of a triple of coor-
dinates, all with x = Xggge-

Lifting Surfaces:

It has proven practical to prescribe the planforms of the canard, the wing and the
stabilizer first. The airfoil inputs are simply functions z(x). Bach airfoil is accom-
panied by four numbers: the desired y-station in the planform, a twist angle, a point
of rotation as fraction of cord length and an elevation Az. Then the airfoils are
adjusted to the given planform. An array of y-stations allows inserting additional air-
foils which are generated from the linear interpolation of the two neighbouring air-
foils. Finally the lifting surfaces are shifted and rotated to their final position at
the fuselage. The final input wire model is shown in Fig. 4.

3.2 LIFTING SURFACES

The present goal is to obtain an equal number of coordinates for each airfoil of a
lifting surface. Therefore a distribution of n abscissae for the lower and upper side
of the airfoils is generated the following way.

a) Fix the nosepoint abscissa xj and the trailing edge abscissa xp,

b) Attract the new leading edge abscissa x2 and the near trailing edge abscissa xp-)
to the nose respectively to the trailing edge by the formulas

= - la
%, Xy + alxy=x,) (ta)
*n-1 T %q ¢ a(xn_z-xn) (1b)
where 'a' is a global attraction parameter (0 <a< 0.5},

c) Calculate boundary sources

P2 = Xy o+ Xy - 2x2 (2a)
Pro1 = Xp_p * ¥p T 2%, (20
d) Calculate new abscissae by
21 -
Xy = 53Xy, 4¥%x;_,=P;) , 1 = 3 through n-2 (3)

e) Calculate source distribution by
|
Py = 3(Py, q*P; ) , i = 3 through n-2 (4)
f) Repeat stap 2 through 5 until convergence
| x

- <
new xoldlmax €

with € being a small user specified number.
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g) Interpolate airfoils at the new abscissae x; i = 2 through n-1, by a third order
polynomial.

3.3 WING-FUSELAGE INTERSECTION

There remains to find the intersection of the lifting surfaces with the fuselage
skin. Since most of the available CAD-systems are not capable to calculate the coordi-
nates of the intersection from two pointwise defined surfaces an algorithm was included
which does this work. It is based on solving the problem of finding the point of inter-~
section of a straight line with a plane spanned by three coordinate triples in space.

For this purpose the fuselage wire frame model is interconnected contiguously by
triangular finite elements (no overlaps, no gaps!). Upon that the intersection point of
the quasi spanwise grid lines at near equal percentage with each of the linear triangu-~-
lar finite elements is calculated. If now one of the three baricentric triangle coordi~
nates is negative, this triangle is discarded and the next one is taken for the inter-
section. Note that for each fuselage network there is only one triangle admissible for
an intersection point. Finally the spanwise airfoil stations of the lifting surfaces
are shifted by a prescribed ratio along the lines of equal percentage towards the fuse-
lage surface to make them fit better with the curvature of the latter, see Figure 5.

3.4 FUSELAGE

The goal of the surface grid generation on the fuselage is mainly to cluster coor-
dinates at the cuts formed by the intersections of the lifting surfaces with the fuse-
lage. Figure 6 clears up the geometric situation, here for the fuselage side wall.

First the coordinates are attracted to the wing cut, e.g.

Xy, =X, 4 afxy-x,) (5a)

z, =z, * alzy-z,) (Sb)

where ‘a’ is the global attraction parameter. Upon that the source boundary condition
for the Poisson coordinate smoother is calculated, e.g.

Py = Xy + X3 4+ X, + X - 4x, (6a)

Ry =2, + 25+ 2, + 25 - 4z, (6b)

The Poisson solver which generates the x,z side wall projection grid is

L ;
o T Tkt e,k T K ka1 Y Xi ket T PiLk! (7a)
] -
Zix T 7%,k t Ziet,k t Zi,ke1 t ZiLket T Bix! (7b)
1
22 8
Piok 2 7®ic0, 0 * Pisr,x ¥ P,k * Pixer! (8a)
1
Ri,k = 7‘(}21_1’k + Ri+1,k + Ri,k—1 + Ri,k+1) (8b)

The steps

a) attraction

b) coordinate smoothing

c) boundary source calculation

arae repeated till cor-ergenc-. The Poisson operators are also applied along the block
boundary lines such that the points on this lines float along them. The coordinates are
linearly interpolated from the block boundary specificaton of the fuselage input.

After the fuselage projection grids are set up, the missing coordinate is interpo-
lated from the fuselage input frames using linear triangular finite elements. At holes
in fuselage geometry such as the intake and the nozzle exit, no surface interpolation
is possible. In this case the Poisson smoother is applied on all three coordinates. It
proved to be necessary to solve the Poisson equations simultaneously on all fuselage
projection grids (bottom, ceiling, side wall, intake, nozzle) with the freedom that the
grid points may float along the edges of the configuration, be they real edges or fic-
titious corner lines. In this particular way jumps in the curvature of the grid lines
belonging to one family are brought to a minimum. Figure 7 shows the final surface grid
with approx. 15 000 points.
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4. SPACE GRID GENERATION

4.1 GENERAL DESCRIPTION

The grid generation for the flowfield follows the same concepts which were used
for the distribution of the abscissae for the point distribution on the lifting surfa-
ces and the generation of the two-dimensional projection grids forming the walls of the
fuselage. As explained in Ref. /S/, the method is based on the solution of the bihar-
monic equation

9*r = 0, 9

which is actually implemented as a systea of two second order partial differential
equations (Poisson type)

vt = § (10)

v23 (11)

"
o

N
where r is the position vector

and $§ is the vector of the control functions (or source terms)

-

After the introduction of central difference approximations for the second deriva-
tives, equation (10) and (ll) can be rearranged easily to yield the final expressions
for the calculation of the coordinates ; and the conttrol functions § for a given
node (i,j,k):

> - -

> _ 1, > e + r. .
Tgae T 8 Tier, 50k T Tion, 9,k T Taaetk T T o,k Y T g ke 1,3,k=1 (
12)
§i'j,k)
. 1,z > - + 3, ) (13)
Si,5,k T 55e1,9,k " §i—1,j,k Y55 561,k ” §i,j—1,k * 1,5,k i,3,k-1

Boundary conditions

Grid control is exercised via the boundary conditions for r and 2 at the inner
boundary. This is done by the attraction of points towards the surface of the configu-
ration as shown in Figure 8:

> + > >
r, =1, ¢+ a(r3-r1) (14)

[

with the global attraction parameter 'a‘.

With the help of eq. {(11), this coordinates can be used to calculate the boundary
values for the source terms at these points {(cf. Fig. 8)

> > »> -+ -+ + >

PR TRE AR P A T L (15)

At the farfield boundary, an orthogonal intersection of the gridlines is imposed
and the source strength is put to zero. At the symmetry plane, the point coordinates
and the corresponding source strengthes are calculated by using a symmetry condition
for equation (12) and (13).
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For the numerical solution of this grid generation system, a simple Gauss-Seidel
or SOR scheme can be used. Each iteration consists of the following steps:

a

Attraction of points towards the body surface {eq. 14),

b) Calculation of the new source terms at these points (eq. 15),
c} Calculation of the source terms in the flowfield (eq. 13),

d) Calculation of the point coordinates in the flowfield (eq. 12),

e) Orthogonal intersection of gridlines at the farfield boundaries.

4.2 SPECIAL REGIONS

Due to the complex structure of the configuration, several regions need a special
treatment. The resolution of the region near the wing leading edge is very important
for the accuracy of the subsequent flow calculations. For a sharp leading edge, it is
sufficient +n~ “ave a cingle grid point in the nose region as shown in fig. 9a. For
wings with a blunt leading edge, this would lead to a grid with rather skewed cells in
the nose region. In this case it is better to have more lines ending on the surface as
demonstrated in fig. 9b. The same assessment is true for all similar edges on the sur-
face of an aircraft, like wing tips and wing trailing edges. The wings, canards and
stabilizers of the presented aircraft configuration have rather sharp leading and
trailing edges and therefore a grid structure similar to figure 9a was used.

Another difficult region is the pointed fuselage nose. The grid in physical space
has only one point in this region but in the computational space, there is a surface
block boundary where about 250 grid lines end (cf. fig. 2). This means that all these
lines have to end in one point (the fuselage nose) forming tetrahedral type grid cells
in this region as shown in Figure 10.

Figure 11, 12, 13 show some surfaces of the resulting grid for the advanced
fighter aircraft with approx. 500 000 points.

5. FLOWFIELD CALCULATIONS WITH BOX-TYPE H-MESHES

The grid used for the present aircraft code is in principle a single block grid
with the body being carved out. This is a philosophy which differs from multi-block
grids where after the surface specification of the configuration many blocks are fitted
to the aircraft skin. The same philosophy also is traced in the implicit Euler code
used for the flow calculations. The entire grid box is taken as a large 3D-DO-loop. The
aircraft configuration is identified by a logical array saying 'no' for each dummy cell
ingide the aircraft and saying ‘yes' in the cells where physical flow exists.

If a 'yes' ('no’') follows a 'no’' (‘'yes') then the code automatically sets the cha-
racteristic solid body boundary condition using the positive (negative) characteristic
field for the flow value extrapolation to the boundary. This procedure is repeated
three times, first for all i-lines, then for the j-lines and finally for the k-lines.
The dummy cells inside the aircraft are included in the calculations in order to keep
the vector lengths as long as possible. Each line algorithm is followed by the evalua-
tion of the Euler flux differences. The flow variable update is performed by an impli-
cit point Gaussg-Seidel Newton type residual driver. Again the whole grid box is taken
as a large 3D-DO~loop. This time, however, the DO-loop is performed twice in steps of
two in order to avoid recursive formulae. The implicit solid body boundary condition is
entered the same way as for the Euler flux differences.

This formulation - single block grid together with a single.block Euler solver -
seams to be the simplest way to treat the flow field past a complex configuration such
as the present. The whole computer program consisting of

a grid generator,

a grid geometry plot software,

an Euler flux subroutine,

an implicit residual driver,

an Euler result plot software
contains 7 000 FORTRAN statements.

A more detailed description of this algorithm and several results from flow calcu-
lations are included in Ref. /6/.
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6. CONCLUSION

The described grid generation gystem is a simple and reliable method for the con-
struction of grids around complex configurations. The single block concept avoids the
difficulties involved in the subdivision of the flow field into several blocks, which
is necessary for the multi-block system. This problem has been reduced to the correct
construction of a surface grid with the appropriate location of the block boundary
lines on it. The disadvantage of the single block concept is the limited grid size due
to computer storage limitations and furthermore it is not possible to introduce embed-
ded and refined subdomains. But nevertheless the resulting gride should be sufficient
for most applications, at least for Euler calculations.

Starting from the surface grid, the space grid can be generated easily by the use
of the described biharmonic grid generation system. Although it is simple to handle
because it requires only a few number of input parameters, there are some cases where
you want to exercise more influence on the grid, at least in some regions. Therefore
some kind of postprocessing would be desirable. This could include algebraic subdivi-
sion of cell layes {/6/) or even an interactive grid optimization concept (/7/).
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Figure 1: Grid Structure (Physical Space)
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ei1gure 2: Surface Grid in Computational Space
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4.8 Algebraic Grid Generation for
Fighter Type Aircraft
by
John Steinhoff

Department of Engineering Science and Mechanices
The University of Tennessee Space Institute
Tullahoma, Tennessee 373988

A systematic procedure is presented for synthesizing a complex computational grid for fighter type aircraft
out of a number of simpler “elementary” grids. This method is useful when a grid is required over an object
which, though :omplex, consists of a number of simpler pieces, such as an aircraft with a number of lifting
susfaces. The procedure presented allows a smooth complex grid to be generated which becomes exactly equal
to each elementary grid as the surface corresponding to that elementary grid is approached. In this way,
methods which may have previously been developed for each piece do not have to be changed and can be used
as “black boxes,” whether they are algebraic, partial differential equation based. or whether the grids are just
given numerically. This blending technique is only one of several tools which we use to generate effective grids.
Other techniques include projection methods for generating surface grids. Some advantages and limitations of
the method are discussed and examples are given of its use in generating complex fighter grids.

1. INTRODUCTION

For many aircraft geometries, the computational domain can be decomposed into a number of pieces each
of which is fairly simple. Also, often an adequate grid can be easily generated for each of these pieces. if
considered by itself. Our basic method involves blending these “elementary™ grids into one smooth compasite
grid. This technique can be used over an entire aircrait. where simple methods exist for generating grids
individually over each of the lifting _urfaces and the pieces of the body. An important feature of the concept
is that it can be used recursively: Composite subgrids can first be formed from elementary grids. using the
method. Then, the same method can be used to form larger composite grids out of these individual subgrids.
If algebraic methods are used to form each elementary grid, which can often be done since each piece is simple.
then the entire grid generation procedure is algebraic, since the blending is non-iter.tive and involves no partial
differential equation solutions. Accordingly, where applicable, it is a fast method suitable for interactive use.
Also, if a partial differential equation is to be solved for some physical quantity and an iterative method is
used to solve a set of discrete equations on the grid, which is usually the case. then at each iteration the grid
can be quickly regenerated and there is no need to store the entire grid system. This feature can be especially
important for large three-dimensional problems. This method is very different from other algebraic methods,
such as those of Eiseman [1i. Each elementary grid is taken to be previously determined. either by algebraic
methods, partial differential equation solution ;2|, or any other means. These grids can be defined over the
entire space, rather than just on surfaces as in “transfinite interpolation™ schemes.

An important feature of the method is that it allows the grid designer to use software packages and
methods already developed or b-ing developed by others (which can be quite sophisticated and complex] for
the elemnentary grids about each piece of the problem. These can be used as “black boxes”. and after each
elementary grid is generated the grid designer can blend them together. Also. after a composite. complex grid
is generated, if one of the pieces is later modified. only the single new elementary grid need be recomputed and
blended into the composite grid.

Since the method is local, and each piece only influences the grid in its vicinity, local methods of controlling
the grid can be formulated. This could be required, for example. if resolution were inadequate or if grid lines
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were to cross. It will be seen that advantages of the method include simplicity and speed, even for complex
geometries, Disadvantages include the lack of guarantees against line croasing (although this can be made
unlikely), possible skewness (although this can be corrected) and the requirement that each elementary grid
locally have the same topology. Also, for the three dimensional problems described here, other techniques are
required which include projection of the wing grids onto the body surface.

2. BASIC METHOD

The basic grid generation method involves the blending technique of Ref. 1, described in the next section.
Generation of a grid is recursive: First, a 3-D grid is computed about the aircraft body alene (denoted ).
Then, an “elementary” grid is developed in a region about the wing {denoted G, }. This is then blended with
the body (G,) grid to form a smooth wing-body grid (G;). As we approach the wing surface in grid G in
computational (1, , k) space, the values (z,y and z) of the physical coordinates of the nodes smoothly approach
the values of the elementary grid (G,,) coordinates, and are exactly equal to them on the wing surface. As we
approach the boundary of the grid G, in computational space, the composite {G,) grid coordinates approach
the original grid coordinates (G,). In the wing-body junction region the elementary G, grid is projected onto
the body surface and then blended.

Other elements of the aircraft are similarly incorporated in a recursive way: the canard is first used to
generate an elementary canard grid G.. This is then blended with the wing-body grid, G, to form the wing-
body-canard grid G3. The blending is such that as we approach the canard in computational space. the grid
approaches G.. The tail is similarly incorporated by blending an elementary tail grid, G¢, with G3 to form the
final grid, G.

The basic topology is cvlindrical about the body, as shown in Fig 1. In each cylinder-like surface the
lifting surfaces are mapped using special “H" grids. These H grids are singularity-free. A detailed study of the
accuracy of these grids for aicfoils for compressible flow computations was presented in Ref. 2 and found to be
comparable to conventional 0" and “C" grids.

A very important feature of our data man+--mnent is that the geometric data defining each element is kept
in a separate file. Each set has the same format except for the body. which is only slightly different. This has
led to considerable simplifications. For example, simple grids can easily be generated for diagnostic purposes
by incorporating only one of the elements at a time.

3. BLENDING TECHNIQUE

Consider a set of .V grids. each spanning the same computational space and approximately the same
physical space. For simplicity, we define the computational coordinates to be just the (integer) indices of the
grids. Thus, in n dimensions we have an n component vector, rm(1)(Z= (zm(l), ym (1), zm(l)) for n = 3)
defined on each grid {labeled m) as a function of the indices I{= (1,;.k) for n = 3). It is important to think
of the n components of r,, as ordinary smooth functions defined in the computational (1) space. Defining non-
negative weighting functions P™(1), the physical coordinates of the composite grid are then simply weighted
sums of those of the elementary grids:

r(1) = Y PmWra Y P

m

The weighting functions are, in general, functicns of all of the indices l. and are a function of how ciose
in computational space the point | is to the ~jementary surface segments. When | approaches some surface
segment, say m,, then P, (1) must approacii I #d .ul the other P’s must approach 0 since there we must have

() = rm, (1)

Some of the “art™ of using the method resides ir the determination of the functions P™(l). Since values of
rm (1) which define smooth grids are determined separately about each elementary surface. the P™(1} do not

& =1 surface

—

constant 1, 7 lines constant 1. k lines

continvation of body
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have to do as much work as in an interpolation method where they typicaily completely determine one of the
coordinates. It will be seen that very simple functions are sufficient. The main problems arise when grids must
be blended with very different values of r in certain regions of 1 near an elementary surface. Then, care must
be taken that a number of derivatives of P™(1) are 0 as | approaches the elementary surface (m,), in addition
to the value of P, (1) approaching 1. As more derivatives are made to go to 0, the region in | space where
r.(1} approaches rm, (1) becomes larger.

We choose a distance function from point 1 to each segment.
> 3™ = [(maz(0,i - P - 1)) + (maz(0,5 - 7% 30" - 7))

- (maz(0,k — k7", k" - k)32
where we take the segment to lie in the region

ST < R < k< kP

Each Z™ vanishes on segment m. We define a “global” distance function, z™, for each segment (m) that is 1
when 1 approaches the segment (™ — 0) and 0 when | approaches any other segment (™ — 0,m’ # m):

o U
VRS
Then, we simply have
1
P™(1) = -1 + cos(xz™)].

2

With this definition the weighting functions approach the correct values on the segments and the first derivatives
vanish.

In two dimensions the method, as described. is applicable even if the boundary segments are contiguous.
In three (and higher) dimensions the method is directly applicable only if the boundaries are not contiguous.
In the fighter geometry treated in this paper. sore of the pieces (such as wing and body) are joined. In the
junction region, the surfaces of one grid (wing} have to be projected onto the surface of the other (body) before
they can be blended.

The particular type of biending region that we have for the aircraft grid involves three dimensional rect-
angles in (i, j, k) space representing the region where the new elementary grid is generated. Embedded in this
region are flat rectangular surfaces with one of the indices (j) fixed. which correspond to the lifting surfaces.
A set of typical cross sections in (i. j) space is shown in Fig. 2. There are two types ot surface; On one,
representing the new lifting surface that we are adding into the grid, the composite grid coordinate (x, y, 2)
values must approach the new elementary values. The other surfaces represent either lifting surfaces already
added to the previous grid which intersect the region of the new grid. or the outer boundaries of the elementary
grid region. On all of these surfaces. the composite grid coordinate values must approach the previous grid
values, so that previously included surfaces are not changed by the inclusion of the new surface. Thus. the new
lifting surfaces correspond to one set of coordinates (the new elementary grid} and all others correspond to the
original grid from the previous step.

4. SEQUENTIAL GRID GENERATION

The grid is generated in a sequence of steps, each of which incorporates another element of the fighter,
while keeping the same topology, as follows:
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4.1 Body

A “body” grid (G,) is generated which conforms to the body at k = 1 between two 1 values {s;(1) and
13(1)). The entire grid is defined to lie in the region

io(1) i <as(l) i (1) €5 <ja(1) 1 ky < k < ks(1).

We take
to(1) = jo(1) = ko(1) = L.

This mapping involves defining a set of (i, ) lines which emerge from the body on constant -z surfaces. but
normal within those surfaces at angle ¢}, and change azimuthal angle ¢ according to

o =01 < fe+ ¢4, x (1 - fi)

where -
j-
o, ==
o =l 7(1) - 1)
and the weighting function
1
fo =
2'1 ~ €08yt

The radial {r) coordinate of each point is a simple function of k£ and the initial radius at k = L. and the axial,
or z value is chosen to approximately match the mean sweep of the wing.

4.2 Main Wing (Wing 1)

This step involves first computing an ~ementary three dimensional grid about the main wing and then
blending it smoothly into the existing body grid (G ). The wing is assumed to be defined at "span stations”
or constant 2, planes, where :, is the distance along a rotated : axis approximately aligned with the wing.
First, the Gy grid is rotated so that the wing is along the z axis. Then. G, is stretched and sheared 1o a new
coordinate system where the wing has a constant cross section in the root region (see Figure 3). With this
transformation, a single 2-D airfoi! grid can be used in this entire region. This grid is defined in an r - y plane
using a 2-D H-grid method described in Ref. {2). This grid has been developed for accurate airfoil soiutions
and is designed to be singularity-free at the leading edge by analytically removing the singularity there. This
2-D grid is first biended into the G, grid as described below. and then projected onto the constant-k surfaces
of the rotated and stretched G, grid in the root region. The stretching and rotation are then reversed so that
the original coordinate system is restored. The wing grid is then projected and blended onto the other k -
surfaces in the root region. The exact z values obtained above are used for k = 1 30 that the exact body shape
is retained but now with a wing-fitted coordinate system. The values of z for subsequent k values are weighted
sums of these computed. projected 2z values and blended z values, so that at the end of the root region. and
beyond, each 2-D wing grid surface in the final system for this step. is at constant z. This allows us to have
more controi over the wing grids away from the body. The results of these operations is the grid Ga.

The blending is accomplished as described above and in Ref. {1.): We have our projected “elementary”
wing grid system defined in a region of 1. 5. k space around the wing:

to(L) < v <as(Ly (L) < < j3(Lyiko(L) < k < k3(L)
where L = 2.3.4 denotes either the main wing. canard, tail or other surface. Each wing is defined by
u(l) < e <0l k(L) <k < ky(L)

with j = ji(L) for the lower surface and j = j2(L) = j;{L) - 1 for the upper surface. We let the values of z.y
(and 2z outside the root region) at each node in the final grid for this step (G2} be a weighted sum of the r.y
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and z values at the same node for G, and the wing grid described above. This weighting becomes zero for the
wing grid (1 for G) at the outer boundaries of the wing grid and 1 (0 for G,) at the wing surface. The result
of this blending and projection is a smooth grid containing the body and first wing. The first wing is typically
the main wing (L = 2), L = 3 corresponds to the canard and L = 4 to a tail.

4.3 Canard (Wing 2).

The generation of the clementary canard grid and blending into the main grid is done exactly as the wing
in step 2. The fact that the main grid now has a wing makes no major difference, even if it intersects the box
defining the elementary canard grid. It also makes no major difference if the canard intersects the original wing
grid box. In fact, the original wing grid box boundaries are not used after step 2. [f the wing intersects the
canard box we merely have an additional constraint on the blending function: the weighting function for the
canard grid must vanish on the wing surface where the weighting function for the main grid (now G;) must
approach 1. The distance and weighting functions are structured to easily accommodate these constraints for
an arbitrary number of surfaces (see Figure 2)

4.4 Tail (Wing 3)

This step, as well as any subsequent ones involving additional surfaces. is done in the same way as above,
where all previous surfaces that intersect the new elementary grid box are taken into account and the elementary
grid weighting function made to vanish there. Again, no constraints are imposed on possible intersections of
the various elementary grid boxes.

5. RESULTS

In Figure 4 a top view of the total configuration for a typical “generic” fighter is shown. with surface lines
of constant j (body) or k (wings) depicted. It can be seen that the first wing sections conform to the body and
gradually conform to constant z planes as the tip 18 approached. In Figure 5 a side view of the configuration
is presented.

The surface grid on the body (k = 1) is shown in side view in Figure 6 and the grids on shells ¥ = 3 and
k = 3 are presented in Figures 7 and 8. The last can be seen to be near the tip of the canard. Figures 9. 10
and 11 present the same surfaces but rotated by 45 ' about the body axis to depict the tail region.

Figure 12 depicts an unblended ( “elementary”) main wing grid for shell 1. This is generated independently
of any other elements, as are the canard and tail grids.

Figures 13 and 14 present top view of ; = 28 and ) = 34 surfaces, which contain the lower surfaces of the
main wing and canard, respectively. The constrained outline of each can be seen.

Figures 15. 16 and 17 depict a front view of a contant -¢ plan~ 'hat contains the canard, wing, and
wing, tail respectively. These elements can clearly be seen.

The grid depicted in the above figures contains approximately 173.000 points. [ts generation required
approximately 16 minutes on a VAX 11 785 minicomputer.

A grid similar to that described above. but with bunching near the lifting surfaces was used in a potential
fiow code to generate a subsonic solution. The code involved a conservative finite volume difference scheme and
an ADI solution method.

A configuration similar to the EFA was treated next. The inlet was plugged giving a smooth body surface.
The side view of the body surface grid is presented in Figures 18 and 19. The side view of shell number 16
near the wing is presented in Figure 20. Cons.ant j-planes containing the wing (j = 26) and canard (; 32)
are presented in Figures 21 and 22, respectively. In Figure 23 a constant-i section near the nose cutting the
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canard is presented. Figure 24 depicts a constant-i section near the middie and cutting the wing. In Figure 25
a similar section is shown, but near the aft section cutting both the wing and (vertical) tail. It can be seen in
this figure that the wing is low on the body and almost tangential at the junction. In spite of this, the wing
grid projection method was able to treat this case and map an adequate surface grid onto the body.

6. CONCLUSIONS

The blending method together with the projection technique appears to offer a relatively simple. fast
and economical method of generating complex grids. The method has been implemented in a computer code,
HPLANE. As yet the selection of the some indices of the elements has not been automated, but the code
is still relatively easy to use for configurations similar to the one presented. A number of configurations have
been treated including forward swept wings and cases with canards near an iniet “shelf” such as the JAS-39.
Presently, it appears that smoothly varying canards, wings and tails can be handied by adjusting the input
data to our present code. Other features such as fillets, discontinuities in lifting surfaces and inlets require
special treatment. Although a combination of blending, projection and ordinary shearing can apparently still
be used successfully to generate good grids. these features are highly individualized and some new programming
is needed for new cases. A very importanat feature appears to be the ability 1o generate new grids quickly
and cheaply, so that changes can be implemented in a short amount of time. The modularity utilized in our
method. together with the aigebraic approach accounts for this. With more experience with a number of
different geometries. it may be possible to develop a single, general code for a wide range of configurations.
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4.9 Composite Grid Generation for Aircraft Configurations
with the EAGLE Code

Joe F. Thompson Lawrence E. Li jewski
Department of Aerospace Engineering U.S. Air Force Armament Laboratory
Mississippi State University Eglin AFB, FL USA

Mississippi State, MS USA

SUMMARY

A general three-dimensional grid generation code based on a composite block
structure Is discussed. The code can operate either as an algebraic generation
system or as an elliptic generation system. Provision is made for orthogonality
at boundaries and complete continuity at block interfaces. The code can operate
in two or three dimensions, or on a curved surface. The input is structured to be
user-oriented, and arbitrary block configurations can be treated.

INTRODUCTION

The construction of computational fluid dynamics (CFD) codes for complicated
regions is greatly simplified by a composite block grid structure since, with the
use of a surrounding layer of points on each block, a flow code is only required
basically to operate on a rectangular computational region. The necessary corre-
spondence of points on the surrounding layers (image points) with interior points
(object points) is set up by the grid code and made available to the CFD sclution
code.

The present grid code, developed for the U.S. Air Force, is a general three-
dimensional elliptic grid generation code based on the block structure. This code
allows any number of blocks to be used to fill an arbitrary three-dimensional re-
gion. Any block can be linked to any other block (or to itself), with complete (or
lesser) continuity across the block interfaces as specified by input. This code
uses an elliptic generation system with automatic evaluation of control functions
either directly from the initial algebralc grid and then smoothed, or by interpo-
lation from the boundary point distributions. In the latter case, the arc length
and curvature contributions to the control functions are evaluated and interpo-
lated separately into the field from the appropriate boundaries. The control func-
tion at each point in the field is then formed by combining the interpolated com-
ponents. This procedure allows very general regions, with widely varying boundary
curvature, to be treated.

The control functions can also be determined automatically to provide ortho-
gonality at boundaries with specified normal spacing. Here the iterative adjust-
ments in the control functions are made by increments radiated from boundary
points where orthogonality has not yet been attained. This allows the basic con-
trol function structure evalulated from the algebraic grid or from the boundary
point distributions to be retained and thus relieves the iterative process from
the need to establish this basic form of the control functions.

Alternatively, boundary orthogonality can be achieved through Neumann boundary
conditions which allow the boundary points to move over a surface spline, the
boundary point locations being located by Newton iteration on the spline to be at
the foot of normals to the adjacent field points. Provision is also made for
mirror-image reflective boundary conditions on symmetry planes.

Although written for 3D, the code can operate in a 2D mode on either a plane
or curved surface. In the case of a curved surface, the surface is splined and
the generation {3 done in terms of surface parametric coordinates.

The code Includes an algebraic three-dimensional generation system based on
transfinite interpolation (using either lagrange or Hermite interpolation) for the
generation of an initial solution to start the iterative solution of the elliptic
generation system. This feature also allows the code to be run as an algebraic
generation system 1if desired. The interpolation, though defaulted to complete
transfinite interpolation from a1l boundaries, can be restricted by input to any
combination of directions or lesser degrees of interpolation, and the form
(Lagrange, Hermite, or incomplete Hermite) can be different in different direc-
tions or fn different blocks. The blending functions can be linear or, more ap-
&r’opriately. based on interpolated arc length from the boundary point distribu-

ons.

The composite structure is such that completely general configurations can be
treated, the arrangement of the sub-regions being specified by input, without
modification of the code. The input is user-oriented and designed for brevity and
easy recognition. For example, the establishment cf currespongence, i.e., a branch
cut, between two blocks requires only the simple input statement
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$INPUT ITEM = "CUT", START = _, , , END = _, , , BLOX = _,
ISTART = _, , , IEND ~ _,—,” [ IBLOCX = __$

where START and END give the three indices of two opposite corners of the cut

section on one block (BLOCK), while ISTART and IEND give the corners of the

corresponding section on the other block (IBLOCK). The code sets up the point

correspondence on the surrounding layers for complete continuity without

additional input instructions.

The features of this code and its use are discussed in Ref. 1. Detailed dis-
cussion of both the use and the operation of the code is given in Ref. 2, and some
examples of applications have appeared in Ref. 3 and Ref. 4. 'The setup of general
multi-blocked -:nligurations is treated in Ref. 5.

The code is written in modular form so that components can be readily re-
placed, and gan adaptive version of the elliptic generation subroutine has also
been written.  The code is vectorized (CRAY-XMP) wherever practical and includes
provision for separate storage of each block on the CRAY solid-state disk {or con-
ventional disk) to allow very large grids to be generated.

CODE STRUCTURE

Composite Crid Structure

The grid is structured as follows: The entire three-dimensional physical re-
gion is filled with a set of interfacing hexahedrons, each of which corresponds to
a rectangular computational block. Each of these computational blocks has its own
set of right-handed curvilinear coordinates, £ (1 = 1,2,3): (independent of those
in the other blocks):

Each block is identified by a number (starting with 1), and the size (the number
of grid points in each curvilinear direction) of a block is set in the integer ar-
ray

CMAX(1, block number) 1=1,2,3

The curvilinear coordinates of the grid points in the block thus assume the integ-
er values

Ei

= 1,2,...,CMAX( {,block number) 1 =1,2.3

at the grid points in this computational block. The blocks do not have to be all
of the same size, and the size of each is specified by input. It is also not ne-
cessary for an entire side of one block to correspond to an entire side of an ad-
Jacent block. It is only necessary that all of the corresponding blocks fit to-
gether to fill the physical region.

Each computational block is surrounded by an extra layer of points in order to
allow connectlons across the interfaces in the physical region to be formed. Al
arrays that contain values for each grid point in a block are therefore dimen-
siored from O to one greater than the maximum number of points allowed in the
block. Thus the surrounding layer of points outside the block corresponds to
1

£" = 0 on one side of the block and to Ei = CMAX(1, block number)+1 on the other:
e m————— 4
! cHax]
: \
| i
v L 1
H L
S

(Actually, provision is made for still another surroundirz layer of points,

corresponding to 51 = -1 and gi = CMAX+2, in order to provide connections for use
in flow codes using two-point one-sided differences.)

Block Interfaces

The grid can be generated such that the grid lines cross the interface from
one Dblock to the next with complete continuity, with slope continuity, with only
line continuity or discontinuously. With any degree of continuity, i.e., in all
but the last case, adjacent blocks must, of course, have the same number of points
on their common interface.

In the case of complete continuity, the interface is a branch cut, and the

code establishes a correspondence across the interface using the surrounding layer




of points outside the blocks. This allows points on the interface to be treated
Just as all other points, so that there is no loss of continuity. The physical
location of the interface is thus totally unspecified in this case, being deter-
mined by the code.

The case of slope continuity is accomplished simply by requiring the grid
lines to intersect the Interface orthogonally on both sides. This can be done
either through Neumann boundary conditions, {n which case point locatfons on the

terface are determined by the code (with the shape of the interface specified by
input), or by iterative adjustment of the control functions with the points on the
intérface specified by input.

Line continuity requires only that the same physical points be specified on
the interface on each of the two blocks it joins, so0 that the points on the inter-
face are completely specified by input. No continuity at the interface requires
nothing at all, of course, and the adjacent blocks do not even have to have the
same number of points on the interface In that case.

Sub-Block Structure

Blocks can be divided Into sub-blocks for the purpose of generation of the
algebraic grid and the control functions. Here point distributions on the sides
of the sub-blocks can either be specified or generated by transfinite interpola-
tion from the edges of the side. This allows additional control over the grid in
general configurations and is particularly useful in cases where point distribu-
tions need to be specified in the interior of a block, or to prevent grid overlap
highly curved regions.

Fundamental Arrays

In the following discussion the field arrays (which contain values at each
grid point in a block), such as R given below, include the block number as a sub-
seript. The code actually operates with data from only one block at a time in
these arrays and hence this subscript is always unity in the code. The present
explanation of usage is greatly simplified by the inclusion of the block number as
a subscript, however.

The three Cartesian coordinates ¢ (1 =1,2,3) of the grid points in a block
are in the real array

A(1, block number, €', £2, £3) i -1,2,3

where (£1, 62. 53) are the three curvilinear coordinates of the grid point in the
computational block.

Each grid point in a block is given a classification set in the array
TYPE(block numder, 51. 52. 53)

This array, which is set up by the input, contains at each grid point one of the
following alphanumeric values (the default is "FIELD" except on the surrounding
layer where the default 1s "OUTY)

TYPE = "FIX": indicates a point for which the Cartesian ccordinates are not to
be changed, e.g., a fixed point on a physical boundary.

TYPE = "FIELD": indicates a grid point for which the Cartesian coordinates are
to be calculated by the grid generation system, e.g., a general
interfior point.

TYPE = "IMAGE": indicates an image point, i.e., a point on a block boundary or
surrounding layer of points, for which the Cartesian coordinates
will be kept equal to those at another (object) point in the
same or another block.

TYPE = "REFLECT": indicates a point on the surrounding layer which is the
mirror-image reflection in a plane physical boundary of a grid
point Jjust inside the boundary.

TYPE = "AVERAGE": indicates a speclal giid point on a tlock boundary which is
the average of all the adjacent grid pointas.

TYPE - "NEUMANN": indicates a grid point on a boundary at which the grid lines
are to be orthogonal to the boundary by the application of
Neumann boundary conditions. (Such a point moves along the
boundary.)

TYPE - "ORTHOG": indicates a grid point on a boundary at which grid lines are to
be mde orthogonal to the boundary by iterative adjustment of
the control runctions. (This leaves the boundary point fixed.)

¥7
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TYPE - "OUT": indicates a point completely out of the computation, e.g., inside
a body in the interior of a block.

The correspondence across the interfaces between the hexahedrons in the physi-
cal reglion is established in the 1nram=r-zarrav
IMAGE(__, block number, g, & ed

where the first subscript assumes the values 0,1,2,3 as explained below. The
Cartesian coordinates of points having TYPE = "IMAGE" (an image point) are kept
equal to those of some other {object) point in the same or another block. The

biock number and curvilinear coordinates (EI) of this object point are in the ar-
ray IMAGk, ~‘here

image polnt
block number = IMAGE(O, block number, €' ,£2,£3)
cject £ - IMAGE(T, block numer, §'.£°,£3)
BB 2 | ez, vlook numer, € .¢2,¢3)

53 = IMAGE(3, block number, E1.€2.£3)

Here the last four arguments of the array identify the image point, while the four
values of the array identify the corresponding object point. This array is set up
by the code. As an example of the function of the IMAGE  array, ir
TYPE(IB,IC1,1C2,IC3) - "IMAGE", then the point with £'~IC1, £2=IC2, £3-IC3 in
block IB is an image point. The corresponding cbject point, say r,‘ -C1l, gQ-Q.
£3-C3 In block E, is obtained from the IMAGE array as

B - IMAGE(0,IB,IC1,1C2,IC3)
C1 = IMAGE(1,I1B,IC1,IC2,IC3)
2 = IMAGE(2,IB,ICt,IC2,IC3)
C3 = IMAGE(2,18,IC1,IC2,IC3)

Then the Cartesian coordinates at the image point are set equal to those at the
ob ject point by

r(1,1B,1C1,IC2,IC3) = R(1,B,C1,C2,C3)
rR(2,1B,1C1,IC2,IC3) « R(2,B,Ct,C2,C3)
R(3,1B,1C1,IC2,IC3) ~ R(3,8,C1,C2,C3)

Block Storage

The code is set up to treat one block at a time, and hence the subroutines op-
erate with only a single block in the field arrays. The blocks are stored either
on disk files, one block to a file, or in the core storage arrays. The code keeps
the number of the block presently in core and only accesses the storage when the
next block to be treated is different from the last. All the field arrays are In
one-dimensional form.

ALGEBRAIC GENERATION SYSTEM

Values of the Cartesian coordinates for grid points on any section of a block
can be interpolated fr9m already-specified values on the section boundary by
transfinite Interpolation’. This interpolation can be used to set points on
boundaries for which the actual shape is not important, e.g. remote boundaries at
'infinity', or to set point distributions on interfaces between the blocks in the
physical region for calculation of the control functions. This same type of in-

terpolation is used by the code to generate an algebraic grid within each block,
either as a final grid or to start the iteration for the elliptic system. 1In this
case the section {s the entire block.

Interpolation Type

The interpolation can-be from the sides, edges, or corners of a section of
block, 2orresponding to tle portion of the section boundary to be matched by the
transfinite interpolation. Cartesian coordinate values for all points on the sec-
tion boundaries that are to be matched must have been set, of course. It is alsc
possible to restrict the interpolation to less than the full dimensiona.ity of the
sect fon.

The interpolation may be either lagrange or Hermite, Individually in each
direction. For the Hermite case, the slope {s made orthogonal to the boundary
with a spacing determined either through specification, or through lLagrange trans-
finite interpolation from the point distribution on the section sides:



Finally, the blending functions for the interpolation can be linear or can be
based on an Interpolated arc length distribution constructed from the point dis-
tribution on the section boundary, also as in the above figure.

Interpolation Projectors

The tr?nsrinlte interpolation is done by the appropriate combination of 1D
projectors’ for the type of interpolation specified. (Each projector is simply
the 1D interpolation in the direction indicated.) For interpolation from all sides
of the sectlon, {f all three directions are indicated and the section is a volume,
this interpolation is from all six sides, and the combination of projectors is

F?FZ*F-FF F,F, - P

1 3~ FyFy - Fofg - PoPy + FiFSF

3

while if only the two directions j and k are indicated, or if the section is a
surface on which Ei is constant, the interpolation is from the four sides on which
either £J or €K is constant

Fj R - Fij {1, j,k) cyelic

ith only a single direction i indicated, or if the section is a line on which gl
varies, the interpolation is between the two sides on which 51 is constant:

using only the single projector Fi‘

With interpolation from the edges of the section, with all three directions
indicated and the section a volume, the interpolation is from all twelve edges:

)
'
'
|

.
-

using the combination

l-‘1 F2 + F2F3 + F3F1 - 2F1F2F3
With only the two directions i and j indicated, the Interpolation is from the
eight edges on which either Ei or EJ vary :

e .

with the combination
(i,k,2)
FF +«F - FFJF qyclic
kL o 172°3 (3,mn)
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With only the single direction i indicated, the interpolation is from the four
edges on which gi varies:

using only Fij' (1, j.k) cyelic.

Interpolation from the eight corners of the section

v -§---

is done using F1F2F3.

ELLIPTIC GENERATION SYSTEM
The code can function as either an elliptic generation system or an algebraic

generation system. An algebrajc grid is generated in any case to serve as a
starting solution for the iterative solution of the elliptic system.

Elliptic System

The elliptic grid generation syst,ems'9 is

3 3 3
i1 Mr + T&Mpc, -0 a)
m=1 na1 "™ net N oen

These elements are more conveniently expressed in terms of the elements af the co-
variant metric vensor, &m

which can be calculated directly. Thus
m
8 - (885 " 81e8y) /8
(m, 1, j) cyelic, (n,k,2) cyclic

where g, the square of the Jacobian, is given by

g=det g [=-r,(c,xgy
m 51 €2 53

In these relations, ¢ is the Cartesian position vector of a grid point
(r = ix + Jy + g¥2), ond the Ei (i=1,2,3) are the three curvilinear coordinates.
The Pn are the 'control functions' which serve to control the spacing and orienta-
tion of the grid lines in the field.

The first and second coordinate derivatives are normally calculated using
second-order central differences. Provision Is also made, howeve., for one-sided
differences dependent on the sign of the control function Pn (backward {or Pn < 0
and forward for Pn > 0). This feature is useful only to enhance convergence with

very strong control functions. Provision s also made for

skewed cCross-
derivatives, but this has been of little use.

The elliptic generation system i3 solved by point SOR iteration using a field

of locally-optimum acceleration paramters.m These optimum parameters make the
solution robust and capable of convergence with strong control functions.



Control Functions from Algebraic Grid

The three components of the elliptic grid generation system, Eq. (1), provide
a set of three equations, that can be solved simultaneously at each point for the

three control functions, P_ (n=1,2,3), with the derivatives here represented uy
central differences. Th¥s produces coillrol functions which will reproduce the
algebraic grid from the elliptic system solution in a single iteration, -f course.
Thus evaluation of the control functions in this manner would be of trivial inter-
est except that in the code these control functions are smoothed before being used
in the elliptic generation system. This smoothing is done by replacing the con-
trol function at each point with the average of the four neighbors in the two cur-
vilinear directions (one 1In 2D) other than that of the function. Thus Pi is

smoothed in the gj and gk directions, where i, j,k are cyclie. No smoothing is
done in the direction of the function because to do s¢ would smooth the spacing
distribution.

The code generates an algebraic grid by transfinite interpolation from the
boundary point distribution, as discussed above, to serve as the starting solutic.
for the SOR iteration for the elliptic system. With the boundary point distribu-
tion set from the hyperbolic sine or tangent functions, which have bsen shown to

give reduced truncation error”-le. this algebrafc grid has a good spacing distri-
bution but may have slope breaks propogated from corners into the field. The use
of smoothed control functions evaluated from the algebraic grid produces a smooth
grid that retains essentially the spacing of the algebraic grid.

Control Functions from Boundary Point Distributions

Control functions can be evaluated on the boundaries using the specified
boundary point distribution in the generation system, with certain necessary as-
surptions (orthogonality at the boundary) to eliminate sore terms, and then can be

interpolated from the boundaries into the field. Earlier appmacl’xe:13 interpo-
lated the entire control functions from the boundaries in this manner. More gen-
eral regions can, however, be treated by interpolating elements of the control
mr)lctions separately. (Some related work along these lines has appeared in Ref.
).

The control functions on a line on which 5“ varies ~an be expressed as

3,

Pn-An*

=}

where An is the logarithmic derivative of the arc length, Sy {8 the arc length
spacing, and P is the radius of curvature of the surface on which 5“ is constant.

The arc length spacing, S and the arc length contribution, An, to the

control function are interpolated into the interior of the block from the four
sides on which they are known by two-dimensional transfinite interpolation using
linear pblending functions:

: Ar Sy

4

<7
AnstTh

Las,
The radius of curvature, b,+ 1s interpolated into the interior from the two Sides

on which it {s known by one-dimensional interpolation using blending functions on
the nyperbolic sine.

C*
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‘e control function is finally formed by adding the arc length spacing divided by
the radius of curvature to the arc length contribution according to Eq. (2).
{This procedure is discussed in more detail in Ref. 9.)

Iterative Adjustment of Contro) Functions

A second-order elliptic generation system allows either the point locations on
the boundary or the coordinate line slope at the boundary to be specifind, but not
both. It is possible, however, to iteratively ad just the control functions in the
generation system until not only a specified lire slope but also the spacing of
the first coordinate surface off the boundary is achiev?g. with the point loca-
tions on the boundary specified. In previous applications the relations have
been applied on the boundary, and the control function increments generated at the
boundary have been interpclated into the field. In t™e present code, these rela-
tions are applied on each successive coordinate surface off the boundary, with the

off-surface spacing determined by a hyperbolic sine distrlbutlon” 12 from the
spacing specified at the boundary. The control function increments are attenuated
away from the boundary, and contributions are accumilated from all orthogonal
boundary sections. Since the iterative ad justment of the control functions is a
feedback loop, it is necessary to limit the acceleration parameters f{or stability.
(More detail is given in Ref. 9.)

BOUNDARY CODE

An auxilliary front-end code‘6 has also been written to sst up boundary data
for input to the grid code. This auxilliary code builds boundary segments in re-
sponse to a series of input commands which again are designed to be u=er-oriented,
brief, and easily recognized. The following features are included:

generation of generic plane conic-section or cubic curves.

generation of cubic space curves.

generation of generic conic-section surfaces.

generation of cubic aurfaces.

generation of surfaces by stacking, rotating, or blending curves.
extraction and concatenation of surface segments.

transformation of surfaces by translation, rotation, and scaling.
reversal or switching of point progressions on surface.

establishment of point distributions by curvature and with specified end,
or interior, spacings.

(10). establishment of surface parametric grids by transfinjits interpolation,
(11). generation of tensor-product surfaces.

(12). generation of surfaces by transfinite interpolation.

(13). generation of grids on curved surfaces.

P e e U P e
W= Fw Ny =
e D N et Yo e o

APPLICATIONS

In general the following details have been found to be advantageous. During
the iteration, cuts on block sides are updated immediately after the block has
been swept, since updating all of the cuts together after all of the blocks are
swept can lead to oscillations near the cut. The SOR iteration is implemented in
a symmetric manner, reversing the sweep directjun after ezch fteration since this
gives better symmetry, particularly with Neumann boundary conditions. The optimum
acceleration parameters are essential to making the system robust. When the con-
trol functions are iteratively ad justed for boundary orthogonality, the use of
one-sided, directed first derivatives is anoropriate since the changes in the con-
trol functions can initially be quite large. Central differences are used in all
other cases. The skewed cross derivatives, however, have shown little value.
Finally, the evaluation of the control functions from the algebraic grid, followed
by smoothing, has proved to be the most generally applicable approach, particular-
ly in complicated configurations. Some examples appear below from Ref, S:

The following figure shows a 27-block structure for a pylon-store, constructed
30 as to transition from an O-type grid on the store to a rectangular macro-block
that can be inserted into a C-grid about a wing.
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The next figure shows an exploded view of the physical region

S

Finally, a cut-away section of the grid is shown
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The insertion of this macro-block in the overall wing-body

wing-body grid is indicated in the next figure
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Finally, some surfaces from the resulting composite grid are shown:

The following figure shows the block structure for a 12-block system about a
wing-cornered store:

WING OUTER
BLOCK BLOCK

CANASD BLOCK

and a section of the grid follows next:

A

M

st ertsrtn I ERANRANNY

Finally, a 21-block structure for one of a pair of stores is shown {the bottom
line is the symmetry plane):

I
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followed by a section of the grid:
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4.10 ANALYTICAL SURFACES AND GRIDS
Helmut Sobieczky
DFVLR Institute f. Theoretical Fluid Mechanics
Gottingen, F. R. Germany
Summary

The use of analytical shape generation is decribed for wing-body configurations
and flow boundary conditions. Flexibility in geometry definition allows for sim-
ple computational grid interpclation. A test case for experiment and code vali-
dation is illustrated.

Introduction

The use of computers has become essential for an efficient development of
research tools in fluid dynamics. Large computers are needed to solve equations
modelling fluid motion, smaller computers create graphic display of calculated
physical phenomena. Flow field discretization is necessary for numerical sol-
ution methods: Model equations are solved within discretized portions of space
surrounding the flow boundaries. Numerical flow solver techniques of various
complexity - depending on the degree of simplifying the equations of motion -
need computational grids of different properties defining resolution of space.
Many grid types for flows past wings and bodies have been developed, the quality
of flow solvers for practical applications is already measured by an ability to
work with relatively simple grids formed around configurations of increasing
complexity. Grid generation has therefore become a large part of the whole compu-
tational effort to model flows: equations and iteration techniques are used to
find grid coordinates similarly as the subsequent effort needs to find the prop-
erties of the flow.

It has been found that the economics of grid generation is very much dependent of
an ability to control surface metrics. Usually the surface is given by a more or
less complete set of coordinates data providing supports for spline interpo-
lation to obtain a surface grid. A much more precise definition of surfaces is
possible if the shapes may ~ piecewise ~ be described by analytical relations. A
modelling of a given configuration by analytical relations is of course tedious,
but in design aerodynamics data generation with such methcds is highly welcome
because of the value of parametric studies.

We have developed a surface generator originally for wings designed for opera-
tion in transonic flow, stimulated by the sensitivity of the flow past given
geometries to variations in transonic Mach number and lift. The design of air-
craft primarily requires wing design concepts but we see that the fuselage and
the wing-body junction influence the properties of a wing substantially.

It is intended here to show that, at least for the purpose of developing aero-
dynamic analysis codes and design concepts, surface generation is the most
important part of grid generation and an analytical approach seems most useful
for many applications, especially if workstations may be used for rapid interac-
tive design and analysis. A strong connection to practical CAD/CAM and to exper-
iment may also be established as will be illustrated here for a simple test wing
configuration.

Development of a geometry generator

The beginnings of various users' geometry software were a necessity to define
boundary conditions for their problem case studies. We recall the time when com~
putational methods, e.g. for fluid mechanics, had to be tested with academic
examples like the parabolfc are airfoil, the circle or sphere and ellipsoid, or
similar. These examples are not too simple for practical flow studies, quite the
contrary they include phenomena very difficult to model, but sometimes these
phenomena are not relevant for practical cases, or they are not scaled properly
compared to the topology of the flow past a more practical configuration. We =
like oihers - had to solve therefore the problem how to define test cases for CFD
as easy as defining a circle or an NACA 0012 airfoil but with intended local com-
plexities to enforce occurrence of some aerodynamic phenomenon. The same
approach should be of practical use to the designer in industry - at least there
should be a straightforward way to extend software to practical tools. Presently
we have a quite flexible family of codes able to generate a wide variety of
wing-body configurstions (Ref.1). To arrive there and continue toward complete
aircraft we need a mathematical, an aerodynamic and an engineering background.
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Mathematical relations

There are some very simple relations describing analytical functions connecting
two given points in space. We may use algebraic and other analytical functions
depending on additional quality requirements like tangents and curvature pre-
scribed at the end points, or instead of smooth curvature some weakly singular
behavior (Fig. 1). An exponential growth rate of the function may be of use as
well as the simple parametric definition of parts of a circle by trigonometric
relations. Another technique to generate discrete distributions, like grid
points between given boundaries, makes use of a vector direction blending, based
on the abovementioned functions used for distributions, clustering and con-
nections. These explicit analytical basic tools are, of course, fast and simple
which should be quite useful for large overall iteration loops, taking into
account the whole design or analysis strategy.

Aerodynamic knowledge

Wings, bodies and their combinations for aerodynamic design, especially in the
high speed regime may successfully use some geometry software package but for
refined investigations - and these are what's needed by an already experienced
community of design engineers - a flexibility to influence shapes, their gradi-
ents and their curvatures locally is essential: shape smoothness is necessary
but not sufficient e.g. in transonic design where curvatures of wing upper sur-
faces need to be carefully balanced according to Mach waves of the flow field in
two or three dimensions (Ref. 2). Computational grids should also be dense in
regions of high or singular curvature, or where shocks are expected to occur.

Airfoil sections traditionally form a basic element of wing definition; our
geometry code allows for given airfoil input data. We blow the sections up to
give shapes with softened curvature peak at the leading edge, then we use a
spline redistribution to uniformize point number and clustering of all sections
serving as supports for a wing. The other possibility of a totally analytical
geometry is to define airfoil generation by characteristic parameters, but their
number might get too large for achieving desirable pressure distributions.
Direct and inverse design methods, on the other hand, are available for transonic
flow so that a resulting optimal 2D airfoil should be taken as a set of input
data.

Less experience exists with optimal planforms and wing-body junctions so that
our effort to generate these shapes analytically is intended to provide a multi-
plicity of variations for optimization strategies. A first application of com-
bining this geometry generator with a fast transonic analysis code to find
optimal wings is described in Ref. 3.

Engineering requirements and code practicability

The resulting shapes, though analytical and of arbitrary data density include
realistic basic shapes with simple straight, uniformely rounded or other ele-
ments which allow a comparison with known case studies as well as they include
simplifications dictated by engineering constraints.

Input for the generator code has been developed to control a selection of func-
tion parameters: besides coordinates these parameters include tangents and cur-
vature or singularity exponents, controlled by a curve key and function
identifier. The key identifies the parameters supporting a special curve like a
leading edge shape or a body crown line, the function identifier selects a cer-
tain function formula to model a portion of the special curve. The resulting set
of data for all definition curves in 3D space is useful for interactive work on a
graphic work station: Axonometric or perspectivic views and selection of grid
portions allows for high productivity because of the extremely fast explicit
computation.

For wind tunnel model production the surface normals are used with a given tool
radius to define the cutter path for NC milling (Fig. 2). Surface undercuts at
concave portions are monitored, so the maximum tool radius for smoothest sur-
faces at the different milling steps is found.

Surface generation

Some elements combined to form a configuration are of prime importance and so we
focused our efforts to generate fuselages, wings, flow wake sheets and flow field
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boundaries including internal flow in nozzles and diffusors. A generalization
of superelliptic quarter arcs gives smooth cross sections, with curvature singu-
lar, finite or vanishing, depending on the exponents used. Restrictions to shape
complexity led to adding an ability to define basically rectangular cross sec-
tions with rounded corners. These cross sections - defined by half axes and
corner radii - are thread onto a curve in space, given by x,y,z as functions of
its arc length. Function subroutines provide first and second derivatives, so
the normal plane to a curve in 3D space can easil;, be given. These shapes are
applied to generate fuselages and channels (Fig.3).

Coordinates of a body surface grid may be defined now in various ways but most
useful sceems an explicit definition of the spanwise coordinate as function of
streamwise and vertical coordinate: we use this for smoothly fix the wing root
onto the boedy.

Wing parameters require a definition of selected spanwise section stations,
leading and trailing edge shape, dihedral, twist axis, twist distribution, air-
foil thickness variation and parameters to blend-interpolate the given support
airfoils between their spanwise locations. We presently treat the fairing of a
wing root, or the fillet, like airfoil sections. An isolated wing with a fillet
opens therefore like a trumpet at its root (Fig. 4). Wing sections are thread
onto a 3D twist axis allowing for applying section angle of attack and a vertical
hending of the wing. The wing root area may now be projected toward the body so

that no gaps are left between body and wing. If wing fillets are provided we may
form a completely smooth wing-body junction.

Many present flow analysis computer codes require a suitable choice of a computa~
tional wake sheet, possibly adjusted to the flow wake iteratively. We have there-
fore provided parameters to continue the wing sections beyond the trailing edge,
downstream toward an exit plane. Vortex roll up at the tip and near the body may
be modeled. Finite trailing edge thickness results in two parallel sheets suit-
able for inserting a fine additional grid block essential to model viscous flow
from a blunt base downstream. The wake of the root section is projected toward
the body surface, allowing to interpolate a simple C-type body surface grid
between upper and lower crown lines and the wing root section plus wake. Body and
wing have now one type surface metrics with sections from the plane of symmetry
to the wing tip (Fig. 5).

Similar to wake sheets we treat far field boundaries like body geometries. Among
the many possible grid topologies we had priorities for CO-type 3D grids for our
analysis codes. So we generate a body with round nose and C-type spanwise sec-
tions. CO grids allow for a refined wing tip analysis, the tip far field C section
is reduced to a cut in the rounded side. CH grids need a wing tip extension and an
open far field. Both types of grids are generated automatically by the grid
interpolation routine (Fig. 6).

Grid interpolation

In this paper we stress the importance to achieve a maximum flexibility in gener-
ating surface grids (including wake and far field) as the best prerequisite to
define mesh distributions in space. With bounding surfaces given, an interpo-
lation may be carried out in many ways depending on configuration complexity.
Many authors use partial differential equations. We have provided surface grida
to serve as boundary conditions for elliptic grid generators, e.g. to obtain a
grid in a channel. Here we restrict a description of our experience to grid
interpolation by analytical methods, added as a subprogram to the surface gener-
ator.

A simple vector combination technique is used in this ~ode, it requires start and
end point in space, a starting direction and a clustering function for the
interpolated points. The problem of intersecting grid lines is relatively eagily
controlled and avoided for the configurations studied. A recent addition con-
firms this easy control: We place the "far field" boundary relatively close to
the body, with sections and points distributed so that surface normals pass end
points of the interpolated grid close enough to avoid too strong turns and inter-
sections. This boundary has turned to a near- or midfield boundary; from there
starting with end point directions, grid trajectories may continue to a new real
far field boundary, far away in free stream and with coarse mesh near this outer
surface (Fig. 7).
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This continuation may also be used to change from a C- to an H-type grid for flow
analysis codes handling block-structured grids. An application is the grid
around a wing or wing-body combination in a rectangular channel, where the
near-field C type boundary is surrounded by an H type block conforming with the
channel walls and also allowing a grid clustering at the walls for modelling vis-
cous flow or ventilation at wind tunnel walls.

An Application: DFVLR-F5 Configuration

In our effort to improve numerical methods in CFD, precisely defined test cases
are needed. The geometry generator developed here offers many possibilities to
provide configurations for such purpose. A first example was chosen carefully
between two extremes: Creating the model of only a "bump" body forming some 3D
displacement in the flow certainly already allows for complicated viscous flow
phenomena experiments, their physical interpretation and computational verifi-
cation. Designing a realistic wing-body configuration with a supercritical
lifting wing, on the other hand, is already possible with this gener-tor using
present aerodynamic experience. The goal was the compromise of trying to define a
"clean experiment®™, avoiding uncertainties of wind tunnel corrections but still
obtaining data related to typical measurements on swept wing configurations for
transport aircraft. Using half model technology in a 1x1 m transohic tunnel
allowed for a larger wing but required a careful flow control at the splitter
plate leading edge, to avoid the thick boundary layer on one of the tunnel walls.
The slotted walls were completely closed, just suction in the splitter plate
bypass channel was provided - among other devices ~ for controlling the plate
leading edge flow (Fig. 8).

The configuration presented as a test case is a non-lifting wing with pronounced
fairing on the splitter plate wall. The surface generator provided data ftor NC
milling of the model. Gecmetry accuracy achieved by this apprdach was remarkably
high, confirming the possibility to use the code for model production.

Airfoil design and wing geometry definition, model production and the wind tun-
nel experiment were the first part of the DFVLR-F5 project. The second part is a
data evaluation and offering geometry and flow boundary conditions from the
experiment (Ref. 4) to interested partners in the CFD community, followed by a
workshop to compare computational results. The test case lends itself to the
development of various computational analysis codes, these will use grids with
different topology. Measured flow data (pressure, temperature and velocity com-
ponents) were modeled analytically to a reasonable accuracy defining flow
quantities on any chosen computational grid in inlet and exit planes (Fig. 9).
Accepting these boundary conditions as good models for measured values, we have
completed a precise geometry input by an equally precise flow boundary.

Our own efforts to improve potential, Euler and boundary layer codes as well as
develop new solvers for the Reynolds averaged Navier Stokes equations add to
experience how to choose grid topology, density and clustering. Potential flow
results give a first insight into flow quality at wing root and tip, N/S analysis
of 2D airfoil flow past the swept wing section gives information about required
grid quality subsequently applied to a 3D version of the N/S code in free stream
and in channel flow (Fig. 10). The goal is finally to learn about a most economic
use of all codes in global and zonal approaches: all of them require rapid and
flexible handling of geometrical problems.

Further use of this wing is, in combination with a generic body, the development
of design and optimization strategies: studying the reaction of flow quality to
the changes in geometry by a systematic variation of certain parameters leads to
a better understanding of flow sensitivity and consequently to better tools for
design aerodynamics.

Concluding remarks

The use of analytical geometry and grid generation was illustrated by definition
of wing-fuselage and other configurations. Flexibility in shape definition and
surface metrics generation includes a large part of the work necessary for
obtaining acceptable computational grids. The fast solution of explicit analyt-
ical relations invites to the interactive design of geometries and grids on a
graphic work station. A generated example was used to precisely define a tran-
sonic flow experiment for analysis codes development.




100

References

f1) Sobieczky, H., Geometry Generation for Transonic Design
Recent Advances in Numerical Methods in Fluids, Vol. 4, Ed. W.G. llabashi,
Swansea: Pineridge Press 1985, pp. 163 - 182

[2]) Sobieczky, H.; Seebass, A.R., Supercritical airfoil and wing design,
Ann. Rev. Fluid Mech. 1984, 16, pp. 337-363

3] Cosentino, G. B., Holst, T. L., Numerical Optimization Design of Advanced

Transonic Wing Configurations
J. Aircraft Vol. 23, 1986, pp. 192 - 199

(4] Sobieczky, H., DFVLR-FS Configuration for Computational and Experimental

Aerodynamics
DFVLR Report to appear 1987

X — ——

T

/

Gagi o bilel

£

y y s ox « bx" of y y
) \ / T y o cte®ne. ,
-
-~ y = ax o bicgx"e
— — N
CURVE ELEMENT WITH PRESCRIBED
CURVE ELEMENT WITwM CURYE ELEMENT WITH PRESCRIBED
SUPPORTS FOR PHECEW!

TANGENTS anb EAS AT ENDS EXPONENTIAL GROWTH TANGENTS AND FINITE A~AlVVI:AL°:uIv[§ e

CURYATURES AT ENDS

FiGURE 1. ANALYTICAL RELATIONS FOR THE DEFINITION QF SHAPE
ELEMENTS, DISTRIBUTION AND BLENDING FUNCTIONS

TOOL SPHERE
(POSITION AT TIP SECTION)
/

ROUNDED WING TiP S} T T 7
T I/Il;"%;';z’l'l'l";,'”""”

TRAILING EDGE

WING TIP SURFACE GRID PARALLEL SURFACE TO WING TIP

FIGURE 2. CUTTER PATH GRID FOR NC MILLING
(TOP VIEW OF WING TIP AREA NEAR TRAILING EDGE)




101

BODY SUPPORT CURVES

CROSS SECTION PARAMETERS FOR BODIES AND CHANNELS

: W,
BN
HAOORNNN
OO
" ““\\ N
Q8

(X

0
S

CROSS SECTIONS THREAD ONTO
AXIS IN 3D SPACE

'I"'Il'
l""l

FIGURE 3. BODY OR CHANNEL SUPPORT CURVES, CROSS SECTION
PARAMETERS, CHANNEL GEOMETRY EXAMPLE: TURBINE
DRAFT TUBE

sl




Py ——p——

SURFACE GRID OF A WING WITH

ROOT FAIRING (DFVLR-F5 WING)

d

)

)
ooty
Ceceetvy Y
Y
O

S
5

CURVYES: SHAPE VARIATION SUPPORTS

WING PLANFORM DEFINITION

102

FIGURE 4. WING GEOMETRY SUPPORT CURVES AND SURFACE GRID

FIGURE 5. WING - BODY CONFIGURATION MODEL WITH COMPUTATIONAL
WAKE SHEET




103

CIC ISR
".‘.‘.““‘\\\\\
R

pSeefett

S

535 =

)
/A

)

%
%Y,
't,i",

R

(/

()
()

<S5

()

oo
!

005,
oo
G
XA
4507,
o,
%,

X

i
i
Z/;Z’/%/“
i
2

<2
<5
S

SO

2, 4
S
v

FIGURE 6. FAR FIELD SURFACES FOR CO- AND CH-GRIDS

/////5//////// p
! s
i //// it

74
',/III;;III/// y
',I,I,I///////

O -

Rt

S
N

FIGURE 7. WING - BODY CONFIGURATION WITH CO TYPE GRID,
GRID CONTROL BY PRESCRIBED MID-FIELD SURFACE

a




104

.

INLET PLANE — — EXIT PLANE

0
0

I

FLAP

1
1
[

+
‘|
!

SUCTION
\

|} |

FIGURE 8. DFVLR-F5 WING - PLATE CONFIGURATION IN TRANSONIC
WIND TUNNEL: FLOW FIELD MEASUREMENTS AT INLET
AND EXIT PLANE

(AB: PLATE, BCDA: WIND TUNNEL WALLS)

COMPARISON OF ANALYTICAL MODEL WITH ANALYTICAL MODEL VELOCITY PROFILE
MEASUREMENTS ON PROBE PATHS ON INLET PLANE COMPUTATIONAL GRID

FIGURE 9. MODELING INLET PLANE FLOW PARAMETERS FROM EXPERIMENTAL
DATA FOR COMPUTATIONAL BOUNDARY CONDITIONS DEFINITION




105

3D INVISCID POTENTIAL FLOW ISOBARS
FREE STREAM MACH = 0.82, ALPHA = 0.

i

: |
HHT

e
itk
\

'7, / t i : i
TSt |
A0 sy
N eyl 7 ;H‘é‘}" .»?’f: !

. /7//[_.1 [l L,l ulll?hli‘lﬂdi.‘m.‘lm‘u‘u C b

20 NAVIER/STOKES RESULTS
(REISTER/SCHWAMBORN CODE)
20 GRID FOR WING SECTION FREE STREAM MACH = 0.78, RE = 2 MILL.,

ALPHA = 0.
3D GRID WITH EXPONENTIAL CLUSTERING

NEAR SURFACE FOR N/S CODES //////
e

(WING TIP)
7777777755
7/ /
R 010117

- N

— ¥ \\t»

FIGURE 10. GRID DEVELOPMENT AND COMPUTATIONAL RESULTS FOR
DFYLR-F5 CONFIGURATION




4011 Mesh Generation for Industrial Application of
Euler and Navier Stokes Solvers.

W. Fritz. W. Haase. W. Seibert
Dornier GmbH, Theoretical Aerodyramics, Fr.odrichshafen, F. R. Germany

1. Introduction

In recent years, there has been a considerable increase in the ability to compuic flow fieiis uboul three-ditensional configurations.
The level of ihe field equulions which could be considered has increased from the small disturbance potential methods in the carly

over full p Euler hods to Navier-Stokes methods. The complexity of the geometry which could be con-
sidered has also increased from isolsted wings over wing-fuselage represeniations to wing-body-tail geometries and more nearly
to plete aircraft g ies. B of the great g lity of the most y used finitc volume technique the flow field

around any conﬁgurauon can be solved if it is posslblc to map the configuration md the surrounding field into the reclangular
computational space. This mapping is done by the grid generation in the physical space.

Already in 1974 Thompson. Thames and Mastin [l] described a method whereby a grid could be generated around an arbitrary

two-dimensional body. This tech which involves the sol of non-linear elliptic pastial differential equations for the grid
points, readily g lises to three d i and ln pnncxple provides the means of grid generation for complex shapes. Me-
anwhile this lechmque is well known as the °S d Th Approach” and is the basis of most of the grid generation

techniques. In the past ten years or so, grid generation has been of secondary importance, but the fact remains, that for the flow
solvers to reach their full potential, robust grid generation techniques for complicated aerodynamic configurations must be devel-
oped.

To this end we present 3 diffcrent methods which can be characlerized as automatic grid generation for complete aircrafi config-
urations, completely interactive grid generation and generation of solution adaptive grids for Navier Stokes calculations.

2. Block Structured Grid Generation around Complete Aircraft Configurations

The block slruclured gnd generzhon technique as it is given for example in the references [2), [3] or [4] divides the computational
d into mut blocks, which can be defined arbitrarily to produce surface-{itted grids whose structure follows
the natural lines of lhe conﬁgurauon The Figure | shows in principle such a block structuring of the grid around an aircraft.
Such a subdivision of the physical space, when properly carried out, can adapt to complex configurations with muhi-components
in such a way as o reduce grid skewness near the boundaries and provide good grid behaviour around the surface slope discon-
tinuities. It undergoes also Lhe storage restriclions of existing computers for fine 3-D grids because during the grid generation as
well as during the flow solution, only part of the complete 3-D field has must be present in the main storage

The (ypical block-structured grid generation process can be described as follows:

@  Decfinition of the overall block structure according to the natural lines of the configuration. (Definition of the block corner
points).

@  Onc-dimensional block perimeler discretization. (Connection of the block corper points). This can be donc in the simpliest
way, connecting the block corner points by straight lines and lakmg an evenly spaced point distribution along those lines.

But such a perimeter discretization can produoe large disc n the spacing and in the slope of the coordinate lines
accross the block boundaries. The pr thod makes large eﬂ'orls to get smoolh perimeter lines accross the block
boundaries.

@  Two-dimensional grid generation for each block surface. Such block surfaces can be pysical surfaces (fuslage. wing eic.). free
surfaces and far field surfaces which are bounded by the block perimeter lines. This block surface discretization cen be done
either by aigebraic interpolation or by the solution of an elliptical PDE.

®  Three-dimensional grid generation for each block. A block here is a subdomain of the 3-D grid, bouaded by the block
surfaces. This also can be done in 3 levels:

-Algebraic interpolation.
-Section wise solution of a 2-D PDE.
-Solution of a 3-D PDE
where each level can be the initial solution for the next level.

The partial differential equations which are solved for 2-D and 3-D grid optimization are derived from the Poisson equation of
the form:

Caa + &y + & = PED)
T + My + My = Qnd)

Cox + 8y + & = REND)

where ({.n, {) are the computational, and (x,y.2) the physical coordinates. P, Q and R are source terms which control the interior
grid can be transformed to the comp di (£.n.0) by interch g the role of de-

pendcnl and undependent variables. This leads to a quasi-linear elliptic system of equations:

AXgg + BXyy + CXg + DXe + EXy + FX; = 0 0




wherein the X = (x.y,z) are the cartesian coordinates of the grid points. These equations are solved for each block by succesive
line over relaxation (SLOR). The coefficients A 1o F are constant or specified functions used for grid control. The grid control
terms are defined along each block boundary and then interpolated across the interior grid. At the boundaries. the values are es-
timated by the oondmon. that all derivatives normal to the boundary in equation (1) vanish. 1t is also possible, to modify the
control functions in an interactive way.

The method a block str d grid of the H-type and uses a di system as foll The X di direction
is the centerline of the fuseiage with Lhe positive direction runping from the nose 10 the tail. The Z-coordinate direction is in the
spanwise direction (lefl wing), while the Y-coordinate points upward from the fuselage centerline.

One main difference Lo other existing methods is the fact, that the grid is not divided into blocks at the beginning of the grid
generation process with following grid geaeration for each block. As far as possible, the subdomains are kept as large as possible
durm; the grid generauon So the complete grid generation is splitted into 3 separate parts: Surface grid generation. block surface

and grid ge where the surface gnd generation and the block surface grid generation are performed
independently of the final block structure. By doing this, it is possible to get grids with very smooth gridlines across the block
boundaries. Only at the end of the grid generation process, after the volume grid generation, the grid is divided into the final block
structure.

The first step in the gencration of the grid is the inpul and the pr pa ion of the configuration g y. Figure 2 shows a typical
geomelry definition. Fuselage wings and tail are d d by some defini i As the fuselage will be mapped into a hex-
adron in the index space, the perimeter lines have 1o be l'ound in the physml space. Thns is done automatically (Figure 2). but the
block perimeter lines can be corrected by the user. Wing fusel can be included in the g y definition. but it
is nol mandatory.

The next step is the generation of the surface grids. First the surface g,nds for the wing, the canard and the vertical tail are gen-
euled separately using a square root di transformati The fuselage surface grid is bum _up slarting at the different
wing-fuselage intersecti If the wing-fusel i are not included in the y they are caluclated
projecting the inboard wing sections on the fuselagc surface. Afler the discretization of the block perimeter lines the surface grid
points are optimized by the solution of a 2-D version of the PDE (1) on the fuselage surface. This optimization can be done in-
(eractively, thereby modifying the source terms in equation (1) for the grid spacing. Furthermore it is possible 10 select arbitrarily
bounded regions in which the surface grid can be smoothed by the solution of the PDE (1) So it is possible, to get smooth grid lines
across the block boundaries by selecting regions which overlap the block boundaries. To do this, the fuslage is transformed into
a coordinate system with the coordinate x in streamwise direction, a coordinate 8 in circumferential direction which can be either
the arclength or the local angle, and a coordinate r in radial direction. Now the distribution of the x- and 8-coordinates is opti-
mized by the solution of the 2-D PDE. The radial coordinates of cach surface grid point are obtained by a bi-cubic splinc ap-
proximation of the input geometry.

During this surface grid generation, only the surfacc grids of each component are stored separately as iwo dimensional arrays
(x(ig), ¥(i,j) and z(ij), where i and j are the iwo characteristic computational surface coordinates).

Figures 3 and 4 show two typical surface grids.

The third step is the trunsfer of the surface grids into the 3-dimensional index space and the definition of all block boundary points
in the far field planes, the discretization of those far field planes, which is very simple, as in the far field planes very rcgular grids
(straight, paralel} hines) are used in those planes. If this has been done, the grid is stored i ise from inb d
on an exiernal dataset as it is indicated in Figure 5 for the index space. (In the index space, the index i runs in sueamwnse direction
starting at the upstream far field, the index j runs from bottom 10 top and k from inboard 10 outboard). In each k-section. the
point distribution along the outer boundaries and along the the surface grid lines is known, all the other coordinates are still un-
known.

Next is the discretization of the internal block surfaces. This is done in 3 steps:
@  Discretization of the block surfaces k = constant.
®  Discretization of the block surfaces i = constant.
@  Discretization of the block surfaces j =constant.

As it is shown in Figures (6) (7) and (8). In each of the above steps, only one block surface is required during the discretization.
Again each block surface k =const., i = const., or j=const. is stored as two dimensional arrays X(i,j) for block surfaces k =const.,

X(k,j) for block surfaces i=const. "and X(k, |) for block surfaces j=const. Each block surface is updated as follows: First the
perimeter lines which divide each block surfaoe into sub-blocks ase estimated. These lines are taken as cubic parabolas with spe-
cified slopes at the end points. For the | discretization along these block perimeter lines arithmetric or geometric
or user specified stretching functions are used as weighting functions. Then the grid of each subdomain is generated either by al-
gebraic interpolation or by solution of the 2-D version of the PDE (1). To get smooth grid lines, those subdomains are chosen
as large as possible. For example the block surface grid in Figure 9 is divided into the following 4 subdomaines:

@® The lete region t fuselage upper side and the upper far field from the upstream far field boundary to the
downstream far field boundary.

@ The plete region b fuselage lower side and the lower far field from the upsiream far field boundary 10 the down-
stream far ficld boundary.

®  The region between upstrem far ficld and the beginning of the fuselage from the lower to the upper far field.
@  The region between end of the fuselage and the downstrem far field from the lower to the upper far field.

For each of those subdomaines the PDE (1) can be solved. As the subdomaines are overlapping across the block boundaries. the
block boundaries are also smoothed by the solution of the PDE (1). Finally the block surface gi'ids can be optimized in an inter-
aclive way by applying equation (i) for aritrarily defined subdomaines and modifying the source terms for equation (1). Due to
this block surface grid generation, all the block suface grids have

@®  continuity of coordinates

®  continuity of slopes

®  and as far as possible continuity of cell size

across the block boundaries.

Figures 9 and 10 show two of such surface grids.
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As the surface grids for each sub-region now being gencrated, the volume grids can be generated for each sub-block separately
cither by algebraic interpolau ionwi lution of a 2-D PDE or by the solution of the 3-D PDE for cach block. Similar
to the block surface grid generation the subd ins for the vol grid generation, for which the grids are generated separately.
are defined as large as possible. Therefore the vot grids are very smooth across the block boundaries. Figure 11 gives an
impression of the 3-D grid arrangement.

The final grid is arranged blockwise with uniform boundary conditions for each block, so that it can be used by a block structured
flow solver. Details of an Euler solution in the above grid are given in ref [5]. 1t can be seen, that the block siructure allows the
generation of fine grids for realistic aircraft configurations which seems to be important for future Navier-Stokes calculations. It
furter avoids the storage restrictions of existing computers for finc 3-D grids. Because of the small main storage requirements of
the surface and block surface discretization (less than 1 MB on the IBM OS/MVS system) this part of the method can run inter-
actively and therefore aliow interactive cootrol and optimization by the user. Tt is then possible to gencrate grids with a total
number of 4.9 million grid points with this version.

3. Graphic Interactive Grid Generation

While observing the development of hard- and sofiware within the CAD/CAM area or in computer graphics generally. the decision
arises almost mandatorily to rearrange the entire g ic prep ing to & graphic-interactive soluti

The advantages are obvious: within a dialog and under permancnt visual control siep by step (and even backwards) a basic ge-
ometry can be upgraded 10 a final network within one session. Errors cap be cancelled immediately since they are easy 10 recognize
and possible variations can be tried at smallest expenditure of lime. In addition. the comprehensive possibilities of 3D-represen-
tation of modern workstations with local intelligence, today with smallest CPU-usage, supply picture sequences, which some yvears
ago were only possible with plex trick film techniq

With this basic objectives the approach described in the following is oaly one of several possible ways, however the principles of

a Y New Pl are exp d. The entire procedure of the grid ge , pendently of the suppl ary gids with
1 which it is accomplished, can be divided into two sub-tasks: geometry-preparation and grid-gencration. The first part leads to a
configuration description by means of suitable g ical ¢} second contains the algorithms which are necessary for

the discretization.

Since for pure geometrical tasks several interactive program systems exist already within the so called Computer-Aided-Design
area, for the solution of the first task, existing software and an appropriale installation should be used. For 1he execution of the
actual grid-generation some new programming had to be done since appropriate Lools are not yet on the market. Of course a
certain number of roulines approved in batch operation could be integrated.

4 3.1 Geometry Preparation

The expenditure of Yy 8 y editing depends on the form of the basic geometry, 10 be supplied is in any case one dataset
per block, which contains all necessary geometrical data for the grid-generation. For handing over the data, an interface was de-
fined. where all the information about the gecometry is traced back to the most simple eiement - the 3D-point. Al block edges as
well as possibly necessary surfsce lines will be transfered in form of identified point seq All actual ples were deveioped
within CADAM by means of 3D-splines - however handing them over was done also exclusively with point sequences. With this
reduction no additional ificati about the g y type is y. The system is open thereby for coupling to any
CAD-system, and in addition, to the transfer of geometries, developed originally with help of closed functions. model-picked or
NC-dala, output of digitizers or data coming from a drawing board. Handing over g ies is ind dent of curve- or surface-
algorithms. Only a few input conventions are necessary to idenlify the point-sequences.

3.2 Description of the Topology

f A prerequisite for the correct interpretation of the transferred data is a unique relation between the counter directions I. J.K and
the 6 blocksides. Consequently, for each point sequence the following must be specified:

®  the block affiliation (block number),

@  a characterisation, for block cdges it is a side affiliation. surface lines additionally need specification of counting direction
and position within a set of lines,

@ finally the number of points.

A consistent order of the points within a is d. The conventions at the interface between geometry preparation
and grid generation is illustrated in Figure 12.

3.3 Mesh Generation

During the process of mesh generation first of all the point sequences are used as input to evaluate 3D-parametric cubic splines.
Afler establishment of the appropriate coefficients, calculation of a first susface grid is done using an ajgorithm for the redisirib-
ution of points on given curves. This is dome on all block surfaces twice in different counting directions. The used routine was
developed originally for the generation of NC-data but it proved 1o be very flexibie in its application.

If certain peculiarities of this approach are considered already when subdividing the total configuration into blocks. this
starting solution will be already good enough in most cases so that it can be used directly as a final mesh.

If the obtained results of the redistribution are pot salisfying, a Poisson-solver with variable source strength is available.
Hereby the grids of the block surfaces can be adapted corresponding to the given block edge lines.

Aftes completion of the (block-) surface grid, discretization of the vol is done by means of the same procedures. Within
integer-planes (index I, J or K =const.) starting solutions are established, which are optimized alternatively by redistribution or
use of the Poisson-solver. .

The whole process runs interactively and menue-driven at a graphic screen, all steps between basic geometry and final volume
distribution can be repeated or varied or cancelled. The results of each action can be controlled and improved immediately if ne-
cessary.

Advantages of the used approach are:

1 putational exp , whereby an interactive operation is enabled,
a very good reproduction of the described surfaces also of complicated configurations using the redistribution procedure.
high Dexibility within block-arrangement, i.e. arbitrary structuring for complex coufigurations is supported,
easy handling of various grid specialities, for Ie the bisection of the meshwidth when passing to an adj block with
use of multigrid logics within the solver.




3.4 Visualization
The visualization of the established grids is i tely, b bere a further, sub ial ad ge of the i ive
approach becomes obvious. Even the illustration of block surface grids only in batch operating already requires several individual
plotjobs - rotations in space and selection of the surfaces 1o be shown usually is done in a time consummg trisl-and-efror proce-
dure. S of piotjobs finally b Y, if one tries to represent aho the volume grids.

Use of a workstaton with local intelligence (c.g. special p for scaling and ) will enable

working at a continuously rotating wire frame mode, where arbitrary parts can be shown or no-shown, so um at utb time 3

complere overview of the current status is guaranteced. The whole volume grid can be downloaded onio the workstation and re-

presented there e.g. by a set of integer-planes. If their vmhlnyBeoupledmlhlsmhblemmonto:nlumr.ﬂmlheus«m
of

walk through the volum&pul step by step nd thereby gain a good i cell

The p of and I of the grids, wtuch is nmuy in sny case, is reduced hereby to a fraction. Without
these ,,‘ v aids it is tedious and oflen only possibi
3.5 Examples

The first example in Figure 13 - 15 shows a configuration where the grid has been built up by a global H-H-structure of 3x3x4
blocks. Three of these - around. in front of and behind the siore are replaced by a local H-O-mesh with 5x3 blocks. The combi-
nation of two different gnd types in that case provides a good geometry representation of the wing as well as of the pylos and the
external store. Results of Euler. using the shown grid are arc given in [6]. The sccond configuration, given in Fig-
ures 16 - 18 consists ol‘ 2 combination of internal and external flow in the case of a faselage with a iplet.

the channel is also modelled up 10 the compressor entry plane In \hn case » H—O—slruclum was used, 18 blocks with 2 total
number of 236.000 volume cells are forming the p | grid. putational results and a comparison with experimental
data is discussed in [7).

3.6 Necessary Hard- and Software

The program development described here 85 well as the prelcnwd eumpb were carried out on a SPECTRAGRAPHICS 1500
workstation. Both main paris of the grid-d hed at the same screen using different possible operating
modes of the eqmpmenl In the socalied emulation rnode (unit opmla like an 1BM 5080) the basic geometry is established by
means of the | software package CADAM. The mesh generation takes place in the native mode by means of special
application programs, which perlml the direct access to the graphic abilities of the equipment with the device-specific soft- and
firmware called PRISM.

As far as within the first siep 1 CAD-soft pack are used, b of the reduction of the interface data to
point sequences, any similar systems could be coupled to the method.

Concerning the neccssary application software within the second section, there are several other 3D-extensions of GKS (the
GRAPHICS KERNEL SYSTEM) available, but each package is restricted to its special corresponding hardware.

Thats why some siandards would be desirable, which enable an easy transfer of a non-trivial graphic-interactive appli
program from one workstation to another.

4. Solution Adaptive Meshes

[n numerical fluid dynamics the equations governing fluid motion are often approxi d by the means of difference equations,
solved a1 discrete locations in the finile problem space. Associated with these approxi is a certain amount of numerical
error (. q. truncation error) which we desire 1o kecp as small as possible. In general, if the higher order derivatives associated
with tr ion errors are negligible, then the error itself is negligible. If this is ot the case, then the step size between adjacent

points must be decressed.

Numerical solutions of the Reynolds averaged Navier Stokes equations require a very fine grid resolution in all thosc regions where
viscous effects are dominating, as long as no wall functions are used. For flow fields with large separaied regions which very ofien
are highly influenced by those separated regions, it is impossible to prescribe correct wall functi It is also impossible to predict
the position and the shape of all the separated regions and the position of all the free shear layers. So at the grid gencration for
such flow fields the regions. where very fine grid resolutions are needed, are still unknown. If copsiant slzp sizes are used, this
means an increase in the number of grid points over the entire space, which for most problems b ly exp

Some other, more practible solutions to this probiem are:

®  The use of local grid refinement. This appro:ch uses a coarse global grid with embedded fine sub-grids in regions of interest,
which is principally possible within the rk of the block structured concept.

@  The use of solution adaptive grids. In this approach, the grids are adapted to the solution during the solution p

In the following sections there are described two different methods for the generation of adaptive single block meshes and adaptive
block structured grids with local grid refinement.

4.1 Mesh Adaption in Single Block Meshes

If the putational grid is adapted to prelimi yresnhsmsuclllwayaslo inimize the afi ioned etror term. we can
expect the final solution to be an imp! in terms of y over the i b d in uoiform or arbitrary grids. In
addition, one would expect the same accuracy for this, a so called *solution adaptive grid” as for a uniform grid baving many more
ponts.

It is assumed that the redistribution of grid points should be based on the distribution of the curvature of a typical. the flow field
describing function v (for example: surface pressure distribution). The curvature is obtained at each point i by the central differ-

ence approximation
a,--u,=h2) u.-ﬂhz—u;_"v-hl"i—l}+o(hz_hz_hl) @

using forward and backward difference operators. For sake of simplicity we may set a) = a, and ay = ay |. By nomalizing the
curvature with the constant step size h,

INT X

Ly ey

3
we oblain a weighted measure &, of curvature at each point:

k= am (4)
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with
h=xi - Xy $)

In order to damp extreme values in curvature and 1o increase the interval of influence, a new measure of curvature,

1 .
zn+|Z"’*/-"' i=n4 ... N—n (6)

is introduced for inner points. A1 boundaries a similar but one-sided formula is used. In all cases described here, a value of
n = | was used, resulling in smoothing three points.
The transformation function is finally obtained from the integration of alpha (see Figure 19):

Si= zl:a,. Y]

=

with §; = 0. One notices that the transformation function S(x,) has its maximum slope where the curvature of u(x,) has its maxi-
mum curvalure, and its minimum slope where the curvature of u(x sub i) is also minimal. The table of values obtained from
, = S(x;} can also be used in its inverse form x; = x(S,). By dividing the interval

w
Sy= H' edx @)
bl |

into N -1 subintervals,

5 =5y ;,‘_‘ , i=23,..N,

one can obtain through interpolation the new dlsmbulwn X; = X(S; 4‘) In order to guarantee monotonicily this interpolation must
be linear, then from the existence theorem the inverse fi exists b Syis

The new step sizes found by the procedure just described d d letely on the b of the function w(x;). If this function
is piecewise linear, some of the a, become zero. This can Jead to unconuolhbly large siep sizes. Since however, the accuracy of
numerical methods always depends on the chosen step size, an additional condition must be introduced, controlling the maximum
interval between two adjacent points. The step parameter P is defined as

Ao = Ph 9)

Where h is again the siep size for uniform point distribution. The gradients of $(x) arc now pared against a mini value
Sn

= —— 0 0]

e T * )

which is controlled by P. Therefore it proves neccessary to use an additional linear iransformation in order to ensure such a mi-
nimum gradient of value q.

Figure 20 shows an fe for this adapti hique for a C-type mesh around an airfoil.

P

The initial point spacing (Jower mesh in Figure 20) is already non-uniform, having more concentrated poiats at the leading and
trailing edges: in these regions a pressure distribution is assumed & priori showing larger curvature. The adapied grid in the upper
part of the same Figure is based on the surface pressure distribution calculated by means of the initial mesh. Therefore concen-
trations of mesh points at the approximate middle of the upper and lower surface as well as at the trailing edge are due to the
curvature of the pressure distribution. The influence of the grid adaption on the flow solution is given in reference [8].

4.2 2-D Adaptive Block Structured Grids with Local Grid Reﬁlmnent

The use of adaptive grids in combination with Jocal grid refi bines the ad ges and cancels the disadvantages of each
method. So the use of adaplive grids requires a high number of grid points to avoid jumps in the grid spacing. On the other hand,
the use of fine subgrids would be a very good approach for viscous flows, if the boundaries of those subgrids could be adapted 10
the structure of the flow field. If additionally a block structure, which is adapted not ouly at the geometric requirements but also
at the structure of the flow field, is used, we will have a very effective discretization of the flow field; (adaptive grids with local grid
refinement) and also a very effective procedure for the flow solution by the use of zonal approach (Euler/Navier Siokes) which
due to the block structure can be done very simply.

The basic idea for the method described here has been given by J. Thompson in [9]). Following a method fos generating 2-D
adaptive grids with local grid refinement for Navier Stokes calculations is described.

A constant dicretization along the i direction in the index space is discribed by the relation:
Ax; = const.

Which can be written in the computational (index-) space as:

x; = const.
or
xge=0

which is a one dimensional Laplace equation. It can easily be seen, that the relation for a two di ional, constant di ization
is:

Xep + Xy =0
where X = (x,y) are the cartesian coordinates. If not the pome\nc distance but the product of a weighting function and the ge-
ometric di is kept in the d this can be expressed by the relation:

WAx; = const.
Where W is any weighting functi In the putational space this yields to :

Wxg = const.




of
Wrge + Wyxg =0 an
which is a one dimensional Poisson equation. Again. the relation for 2 dimensions is:
WXz + WXy, + W,(Xt + WX, =0 2
Where W, and W,'m the weighting functi for the two 1 di directi The above equation is an elliptical
partial diffe which is y used for grid genenuon If now chanclensuc propcrues of the flow field zre xakcn
as weighting functions W, and W, the lbove PDE will generate adaplive grids. The for the

i~direction should be. coupled with' the pressure distribution, and the weighting function in duecuon which is the direction normal
to the main flow direction, should be pled with any indicalor for viscous effects. Numerous experiments with different

weighting functions have shown that the best weighting function for the putational i-direction is given by the relation:
é
W, = el + p—e-z’i 13)
ox ax?

So the weighting function is a combination of the first and the second derivative of the pressure distribution. This gives a grid
adaption to pressure gradients and extreme values. @ and B are weighting parameters by which the user can make the first or
second derivative more dommalmg Bolh denvauvcs are normalized in such a way that the absolute values move between 0 and
1.0. in the j - direction, p may be the total pressure loss- or the vorticity distribution. 1t was however
found out, that the total pressure loss is the most suitable parameter (o drive the grid adaption 1o any flow field discontinuity,
because its values move within a small range whereas the values of the vorticity spread over several powers of ten. So the weighting
function for the j-direction has been choosen as:

W= ¥l = ) a4
Where y again is a scaling parameter. The grid adaption can be performed in 3 levels:
®  Adaption of the surface point distribution along the surface to the surface pressure distribution.
@  Adaption of the field grid points normal to the flow direction.
@  Adaption of the field grid points in flow direction.

The perimeter adaption along the surface is done by the solution of a one di iona) poisson eq.

:,‘x“+x(—0 {15)
If the above equalion is approximated by finite differences in the index space this leads to a simple tridiagonal equation system.
The weighting function is g)ven by equauon (13) For this surface pressure adaption, only the surface pressure distribution is re-
quired. For the ficld adap the i according 10 eqs. (13) and (14) are taken. Those weighting functions are
introduced as source terms into the elllpucal PDE for grid oplimization. In order to get smooth adapted grids across the block
boundaries, the field is divided into sub-regions which are as large as possible and which are overlapping. Only at the end of the
grid generation process, the grid is split up into the final block structure.

The local grid refinement is treated as follows: First the uniform, finest grid is generated. Then the coarser biocks are obtained
by dropping each 2., 4., 8. gridpoint in i- and/or j-direction. Figure 21 shows such an unadapted grid. Here again. the initial grid
is already non-f -uniform. Along the surface the grid points are concentrated at the leading edge and at the trailing edge. For the
grid adaption, the weighting functions of the flow sclution are interpolated into the uniform fine grid. Then the grid adaption is
performed for the uniform fine grid and finally the coarse subgrids are generated. The best strategy for the use of such adapted
block strucired grids seems to be the following:

@® Make an Euler calculation in a coarse mesh to get the significant surface pressure distribution. (Position ot the extreme
values and gr ). It is not y that the solution is converged, it is only important, to have a significant pressure
distribution.

®  Next, a Navier Stokes grid adapted to this surl‘ace pressure dmnbuhon is generated. This grid can have coarse mesh sizes

in j-direction in order to accelerate the time develop of the

@  Start the Navier Stokes solution.

@  During the solution process. the field grid is adapted from time to time by the use of the total pressure loss as weighting
function. So the grid points are automatically concentraied in regiots with highly dominating viscous effects

Figures 22 and 23 show a significant pressure distribution and the total pressure | loss s which are obtained during the sol-
ution process for the geometry of Figure 21. 1n Figure 24 the surface pi grid is pi d. Compared wilh Figure
21, it can be seen, that the grid points are ated in regions with grad and wnh cxtrcme values. Figure 25 finally shows

the adapted grid. Now the viscous regions can be recognized in the grid.

The field adaption to the total p loss distribution is very stable and can be done automatically during the flow solution.
It was also found, that the field adaption to the field pressure distribution has po advantages as long as there are no pressure
discontinuities in the flow field. The adaption of the grid to the surface pressure distribution is sufficient and can be done once
at the b ing of the calcul

5. Conclusions

Although all the presented grid generation (echnlques use only elliptical grid generauon (hyperbolic and parabolic grid generation
is also widely in use), they show aiready, that there is no unique grid generation technique.

All automatic grid generation procedures have the advantages that the grid can be described by a few grid generation parameters
and by lhls. the complete grid can be modified or changed very fast. But the automatic grid generation has its limitations in the

p y of the g y. For cach new geometry, the automatic grid generation procedure has to be extended 10 the new con-
figuration.

The graphic interactive grid generation avoids the difficulties with the complexity of the geometry On priniple. each grid can be
“constructed” by the user, where automatic subsystems (algebraic or elliptical grid generation techniques) can be used
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Two- and three-dimensionul viscous flow tions of i i ions require a very large number of mesh points to
resolve all the gradienis properly. Here the block structuring in combination with mesh concentration and adaptive grid generation
can heip to provide the required flow field accuracy.
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Surface Grid for a Transport Type Aircraft

Figure 4:
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Figure 6:

Block Surfaces i = const.
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A Counter directions I, J, K
and identification of
the block-sides

B Characterisation of
the block-sides

C Characterisation of
the surface-lines

Figure [2: Conventions at the Interface between Geometry
Preparation and Grid Generation

Figure 13:  Wing-Pylon-Store Combination,
Swrface Mesh and Plane of Symmetry




Figrre 14

Figure |5:

Wing-Pylon-Store Combination,
Rlock Structure of Global Arrangement

Wing-Pylon-Store Combination,
Local Block Structure
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Figure 17:  Fuselage with Inlet,
Block Boundaries near Inlet
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Non-Adapted Block Structured Grid

Figure 21

Significant Surface Pressure Distribution.

Figure 22:
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Figure 25: Swrface Pressure Distribution and Total
Pressure Loss Adapted Grid.
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4,12 EXPERIENCE WITH THREE-DIMENSIONAL COMPOSITE GRIDS*
by
J. A. Benek, T. L. Donegan, and N. E. Suhs
Calspan Corporation/AEDC Division
Arnold Air Force Station, Tennessee 37389-9998
ABSTRACT

Experience at the AEDC with the three-dimensional (3-D), chimera grid embedding
scheme is described. Application of the inviscid version to estimate wind tunnel wall
interference on a wing/body/tail configuration is described. Applications of the vis-
cous version compute a 3-D cavity and a multiple-body configuration. A variety of grid
generators is used, and several embedding strategies are considered.

1.0 INTRODUCTION

In the last ten years, Computational Fluid Dynamics (CFD) has evolved from an
academic enterprise into a necessary, if not integral, part of aircraft design and devel-
opment. Two circumstances have stimulated this change: the maturation of fast numerical
algorithms for solution of the Euler and Navier-Stokes equations and the reduction of the
price of the large supercomputers required to perform the computations. As the entry
costs decrease and the value of flow simulations becomes more widely recognized, the de-~
mands for even more complex simulations increase. The heightened level of expectation
also increases pressure to produce "timely" solutions. This pressure can only be ex-
pected to increase as CFD becomes more closely coupled to the design and development
processes. Frequently, the most critical phase in meeting the demand for computations is
the construction of a suitable mesh., To ameliorate the difficulties experienced with
grid generation, alternative computational strategies are being explored. Basically,
they can be divided into two categories: global approaches and domain decomposition ap-
proaches.

The global mesh approach uses a single computational net to discretize the geometry
and flow field (e.g., Thompson (Ref. 1), Rubbert and Lee (Ref. 2}, and Shang and Scherr
(Ref. 3)). Complex geometry fregquently requires the introduction of internal boundaries
(e.g., cuts) into the domain and may result in very skewed grids and regions of unac-
ceptably low spatial resolution. The introduction of internal boundaries increases the
bookkeeping required in the flow solver and can require modifications to the solution
algorithm. One novel approach utilizing a global mesh is described by Jameson, Baker,
and Weatherhill (Ref. 4). The major thrust of this work is to use a finite volume algo-
rithm based on tetrahedrons and eliminate the requirement for an ordered mesh. A complex
data-structure is required to define the relationships among the grid points comprising
the volumes.

Domain decomposition includes many techniques: zonal or grid patching [e.gq.,
Hessenius and Pulliam (Ref. 5), Rai {(Ref. 6), and Holst, et al. (Ref. 7)], and grid em-
bedding/oversettings [e.g., Atta and Vadyak (Ref. 8), Benek, et al. (Ref. 9), Venkatapathy
and Lombard (Ref. 10), and Berger (Ref. 11)]. The basic idea of this strategqy is the
subdivision of the computational domain into regions (not necessarily disjoint) that can
be more easily meshed. An additional advantage is that each subdomain may be treated
separately and a different flow model or solution algorithm used in each. Such flexi-
bility provides economies in computer resources as the more expensive viscous flow
solvers can be confined to regions where viscosity dominates the flow. The key to suc-
cesgsfully implementing this strategy is provision of a means of intergrid communication.
This is the point at which the various techniques differ most widely. All these tech~-
niques require additional bookkeeping beyond that required for the basic flow sulver to
facilitate communication.

Presently, no one method has been demonstrated to be clearly superior. It seems
likely that some synthesis of the various strategies will become the method of choice.
In the meantime, we have chosen the grid embedding approach as it includes grid patching
as a special case and thus provides a flexible method for accomplishing a broad range of
flow simulations. 1In this paper we will describe our experience with the chimera scheme
which was first developed by Benek, Steger and Dougherty (Ref. 9). The three-dimensional,
color graphics code required to support this effort was developed by Buning and Steger
(Ref. 12).

2.0 DESCRIPTION
The chimera grid embedding technique is a domain decomposition strategy and has two

principal elements: (1) decomposition of the domain into subdomains which typically
overlap and (2) communication among the grids. The selection of subdomains is arbitrary:

*The research reported herein was performed by the Arnold Engineering Development
Center (AEDC), Air Force Systems Command. Work and analysis for this research were done
by personnel of Calspan Corporation/AEDC Division, operating contractor for the AEDC
aerospace flight dynamics test facilities. Further reproduction is authorized to satisfy
needs of the U. S. Government.
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the major considerations are the identification of regions that may be easily meshed, the
isolation of special regions of the flow (e.g., where viscous effects are important), and
the available computer memory (which determines the maximum number of points in each sub-
domain). Theoretically, this means the total number of mesh points in the entire domain
is unlimited. Intergrid communication is established by the transfer of boundary data
among the subdomain grids. The data for embedded grid boundarijes are obtained by inter-
polation of the independent variabies in the mesh in which the boundary is embedded.

There are two types of interpolation boundaries: (l) outer boundaries and
{2) artificlai poundaries. Artificial boundaries are produced whenever a solid surface
is embedded in or overlaps another subdomain. Figure 1 depicts a flapped airfoil where
the flap mesh lies within the airfoil mesh. Points of the airfoil mesh are contained
within the solid boundary created by the flap surface, and therefore lie outside the
computational domain. A portion of the airfoil mesh in the neighborhood of the flap is
excluded from the airfoil grid (i.e., the shaded area around the flap within the airfoil
mesh). The boundary of this excluded region of the airfoil mesh is an artificial
boundary.

The computational procedure can be illustrated as follows: The solution is
advanced on the airfoil mesh. Outer boundary data for the flap mesh are interpolated
from the solution on the airfoil mesh and transferred to the flap sclution. The trans-
ferred data are used as boundary conditions to advance the solution on the flap mesh.
Data for the artificial boundary of the airfoil mesh (dashed line on the flap grid} are
interpolated from the solution on the flap grid. The interpolated data are transferred
to the artificial boundary in the airfoil mesh and the process repeats until convergence
is obtained on each mesh.

The chimera procedure naturally separates into two parts, (1) generation of the
composite mesh and associated interpolation data and (2) solution of the flow model or
models on each mesh. Each part is embodied in a separate computer code, PEGSUS and
XMER3D., PEGSUS takes independently generated component or subdomain grids and the em-
bedding specifications as input and automatically constructs the composite mesh and com-
putes the interpolation data which are output. XMER3D takes the PEGSUS output and flow
specifications as input and solves the appropriate flow model on each grid.

2.1 PEGSUS

Automatic generation of a composite mesh from the input component grids requires
PEGSUS to (1) establish the proper lines of communication among the grids through appro-
priate data structure, (2) construct holes within grids, (3) identify points within
holes, (4) locate points from which boundary values can be interpolated, and (5) evaluate
interpolation parameters. In addition, PEGSUS performs consistency checks on the inter-
polation data to assure their acceptability and constructs output files with the data
structures appropriate to XMER3D. The most recent version of PEGSUS allows very general
interactions among grids as indicated in Fig. 2. In addition, any grid may introduce a
hole into any other mesh. Details of the hole construction process, and associated data
structures, are provided by Benek, et al. {(Refs. 9, 13, and 14). A trilinear interpola-
tion is used to obtain boundary data.

2.2 XMER3D

The implementation of the chimera scheme must provide for the use of multiple flow
models. The current choice of models is the 3-D Euler equations for inviscid flow and
the 3-D thin-layer Navier-Stokes equations for viscous flow. The algebraic model of
Baldwin and Lomax {Ref. 15) is used to simulate turbulent flow. The implicit, approxi-
mate factorization scheme of Beam and Warming (Refs. 16 and 17) is used tc solve the
model equations. The implementation follows that of Pulliam and Steger {Ref. 18) and
uses explicit boundary conditions. Modifications to accommodate the chimera scheme are
described by Benek, et al. (Ref. 14).

3.0 APPLICATIONS

A major motivation for the development of the chimera scheme at the AEDC was the
requirement to provide routine computational support to testing. Estimates of the ef-
fects of the wind tunnel environment on aerodynamic data are of particular interest.
Typically, lead times are short and grid generation is usually the pacing item in per-
forming CFD simulations. Also, there is the requirement to compute time-dependent flows
involving aerodynamic configurations in relative motion as exemplified by the space
shuttle booster configuration and store separation from military aircraft.

The 3-D chimera scheme has been used to compute both viscous and inviscid flows
over a variety of configurations. These include a wing/body/tail, bodies of revolution
in close proximity, cavity flows, and base flowr for Mach numbers spanning the range from
subsonic to supersonic. The following sections will illustrate some of these applica-
tions of the chimera scheme.

3.1 Inviscid Flows

One of the intended uses of the chimera scheme at the AEDC is the computation of
wind tunnel wall and support interference (e.g., Kraft, et al. (Ref. 19) and Suhs (Ref.
20)). A version of the chimera scheme was developed for this purpose. The model shown
in Fig. 3 was designed for assessment of wind tunnel wall interference. It consists of
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a blunted ogive-cylinder and a mid-mounted wing and tail., The wing and tail are constant
chord planforms swept back at 30 deg and have no twist or taper. C(ross sections parallel
to the plane of gymmetry are NACA 0012 airfoils. Initial, free-air solutions for the
confiquration were reported in Refs., 13 and 14.

For the tunnel calculat:ions the outer bcundaries of the grids about the fuselage,
a portion of the sting support, wing, and tail for this model are illustrated in Fig. 4.
The wind tunnel walls are represented as shown in Fig. 5 with the model embedded in the
tunnel mesh. The region devoid of mesh lines on the tunnel symmetry plane in Fig. S
represents the hole in the tunnel grid introduced by excluding points from the solution
on the tunnel grid in the vicinity of the model.

Figure 5 illustrates the flexibility inherent in the chimera scheme. The model
geometry and sting grids were constructed by adding a mesh containing the sting to an
existing mesh used to model the fuselage. The component-by-component construction
process is particularly useful for wall interference calculations because no additiocnal
grid generation is required to change model angle of attack. All that is required is
that the grids representing the wind tunnel model be rotated relative to the tunnel mesh
and be re-embedded in it. PEGSUS performs such transformations on component grids by a
single change of input.

Several grid generators were used to construct the component grids shown in Figs.
4 and 5. They are a two-dimensional (2-D) grid generator developed by Sorenson (Ref. 21},
and the three-dimensional generators developed by Soni (Ref. 22), and Thompson (Ref. 23).
There are a total of 250,445 grid points in five meshes for this configuration.

The wall interference model was tested in the 1l-ft Aerodynamic Wind Tunnel {(1T) and
in the 4-ft Aerodynamic Wind Tunnel (4T). Tunnel 1T has a one-foot-square test section,
and 4T has a four-foot-square test section. The model has 2.5-percent blockage in IT but
only 0,16-percent blockage in 4T, so the 4T data are consideied to be interference-free
over the range of test conditions presented. Measured static pressure data were obtained
on the model surface and at an interface near the Tunnel 1T walls at a radius of $ inches
(see Fig. 6). Static pressures along specific streamwise lines at the interface were
measured by a two-component static pipe technique (Ref. 24). For the comparisons here,
data were obtained at angular locations, 8, of 15, 85, 95, and 165 degrees as shown in
Fig. 6.

Calculations were made to compare the computed pressures with the measured pres-
sures and to determine the quantitative effects of wall interference on the model. The
calculations were made using the chimera technique and the application at the tunnel
walls of a porous wall boundary condition developed by Jacocks (Refs. 19 and 25). The
conditions chosen for comparison were a Mach number, M., of 0.9 and an angle of attack,
a, of 4 deg. The tunnel porosity is uniform at three percent.

The pressure coefficient comparisons at the interface (Fig. 7) show good agreement
and correctly predict the trends. The expansions near the wing and tail locations are
evident, especially near the side wall. The wall interference effects on the model sur-
face may be seen by comparing the computed and experimental pressure coefficient distri-
butjons on the wing, fuselage, and tail for both the tunnel and free-air cases {(Fig. 8).
The free-air solution computes a shock further downstream than the tunnel solution. This
is consistent with the tunnel data, assuming the 4T data are interference-free. The ab-
sence of the viscous effects in the calculations result in the shock wave location being
aft of the experimental shock. However, the trends are the same.

Mach number contours on the wall interference model are presented in Fig. 9. The
contours join smoothly across mesh boundaries. The shock wave on the wing can be seen to
continue around the fuselage. The figure illustrates the effect of decreasing spatial
resolution in high gradient regions. The shock wave can be seen to be smeared on the
fuselage compared to the wing because of the decreased resolution in the fuselage grid.

The success of the chimera scheme in providing realistic estimates of transonic
wall interference has made its use for test planning and data analysis routine at tha
AEDC. Detailed descriptions of the wall interference calculations may be found in Ref. 26.

3.2 Viscous Flows

Cavity Flow

Interest in the flow in and around cavities has increased with the need for ad-
vanced aircraft to carry stores internally. Benefits from such configurations include
increased range, better maneuverability, and reduced detection signatures (Ref. 27).
Still, difficulties arise when attempting to safely eject a store from a weapons bay.

In order to understand these difficulties a computational effort to determine the loads
on, and trajectories of, stores in weapons bays is being pursued at the AEDC. As a first
step, an empty 3-D rectangular cavity is modeled.

Using the grid overlap capabilities of the chimera scheme, two grids were developed
to define the rectangular cavity in a flat surface. The first grid is a Cartesian grid
defining the cavity and a region above the cavity. In Fig. 10, a sidewall plane of the
cavity grid is shown. The cavity grid has a concentration of points along all solid wall
surfaces and in the region of the shear layer. This grid extends above the cavity by 20
points in order to capture the entire shear layer in one grid. The cavity grid has a
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total of 79,002 points. Also shown in Fig. 10 is a side plane of the Cartesian grid de-
fining the region exterior to the cavity. Again, points are concentrated along the solid
wall. This grid also extends in front of the flat plate in order to allow the flow to
stagnate on the leading edge and allow a boundary layer to grow. The grid above the
cavity has 78,625 points. These two grids overlap with a common region above the cavity
and match point for point.

Comparigons of computations were made with experimental data taken at the Trisonic
Gasdynamic Facility of the Air Force Wright Aeronautical Laboratories (Ref. 28). The
Trisonic Gasdynamic Pacility is a closed-circuit, continuous-flow wind tunnel with a two-
foot-square test section. The Mach number range is 0.23 to 3.0. The rectangular cavity
tested has a length-to-depth (L/D) ratio of 5.6 and a width-to-depth (W/D) ratio of 1.7.
The dimensions of the cavity and flat plate are shown in Fig. 1l1. Pressure data were
taken along the plane of symmetry of the cavity on the front, bottom, and aft walls, as
well as on the sidewall and on the flat plate surface as illustrated by Fig. ll. Two
types of data, steady and fluctuating static pressures, were made. The steady measure-
ments were made using standard pressure transducers connected to static orifices and the
fluctuating (or unsteady) measurements were made with flush mounted Kulite® pressure
transducers. The unit Reynolds number was 2.31 x 106 per foot.

Experimentally, cavity flows have been shown to be unsteady with large temporal
pressure fluctuations (Refs. 29 and 30). Therefore, the flow solver was run with global
time stepping. The characteristic time for the flow, t.y, is defined as the time for the
flow to traverse the length of the cavity at free-gtream velocity, approximately 0.85 ms.
Typically, the calculation is run for 5 ten to permit the inijitial starting transient to
decay. After the initial startup, the steady pressure coefficients are calculated from
time-averaged pressures for the succeeding 6 t.p. Comparisons of data and calculations
for fluctuating pressures are made in terms of the sound pressure level (SPL). SPL in
decibels (db) is defined as

SPL (db) = 180 + 20 log (Pyps/Pres)

where P.yg is the root mean square of the pressure in psi and Pref is 2.90075 psi, a
standard reference pressure. As with the pressure coefficient results, the SPL is calcu-
lated over the same 6-tcp interval.

In Fig. 12 calculated centerline pressure coefficients at M_, = 0.74 are compared to
data for the front, bottom and aft walls of the cavity. The comparisons in Fig. 12 show
good agreement between calculation and data. Of particular note is the good agreement on
the aft wall where the shear layer stagnates. Comparisons of data and calculation for
the SPL are shown in Fig. 13. The difference between calculation and data ranges from 2
to 5 db; still, the general trend is represented by the calculation.

In Figs. 14 and 15 representative details of the cavity flow are shown at four dis-
crete time slices. The time differences between each time slice is 0.4 tcp. In Fig. 14,
Mach contours are shown for the cavity plane of symmetry. At t = 11.0 tcp, the shear
layer across the cavity opening is stagnating on the back wall and is in the process of
moving out o1 the cavity. The shear layer is shown to have moved out of the aft end of
the cavity at t = 11.4 tch. At t = 11.8 tch, the shear layer begins to move back down
into the cavity setting up a separation region downstream of the aft edge of the cavity.
Finally, at t = 12.2 tch, the shear layer at the aft end of the cavity has moved back in-
to the cavity as the separation region past the aft edge increases in size. The shear
layer at the front portion of the cavity shows relatively small changes in the flow.

Another way to look at this complex flow of the cavity is shown in Fig. 15. For
this figure the mass flux across the cavity opening is plotted as a 3-D surface. If the
surface bulges upward, mass is flowing out of the cavity. The three-dimensionality of
cavity flow is illustrated by the changes in the mass flux distribution at different
lorations and times. The mass flux shown at the front edge of the cavity is caused by
vortices that are generated in this region. With the exception of the front-edge com-
plexity, the flow is shown to have a greater amplitude at the aft end of the cavity which
is consistent with the large SPL distribution of Fig. 13. Details of this work can be
found in Ref. 31 along with results for M, = 1.5.

Three-Body Configuration

Flow about an aerodynamic configuration consisting of three identical bodies of
revolution was computed. Each body (Fig. 16) consists of a 3.333-caliber cylindrical
centerbody and a 1.667 tangent-ogive forebody and afterbody. The afterbody is truncated
to join a 0.7-diameter sting. Details of the model and a discussion of the experiment
are given by Cottrell, et al. (Ref. 32}). The body axes are arranged in an equilateral
triangle shown in Fig. 17. The spacing in the figure is given in :wodel diameters. The
right, left, and bottom designations are consistent with Ref. 32 and were established by
looking upstream. The composite grid about this configuration consists of ten grids with
a total of 627,172 points. The outer mesh Gj is a hemispherical shell whose polar axis
is the x~axis. Grids G, G3, and G4 (Fig. 18) are cylindrical grids whose axes coincide
with the polar axis of Giy. These three grids have continuous grid lines and slopes
across the grid boundaries. Each grid is "blocked" with two viscous grids. Grids Gs,
G7, and Gg are hemispherical viscous grids representing the three forebodies. Grids Gg,
Gg, and G1g are cylindrical grids representing the aft portion of the three bodies. Fig-
ure 18 shows the three bodies and their grids embedded within the three cylindrical grids,
G2, G3, and G4. Figure 19 shows a cross-section of the composite mesh in a vertical
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plane through the x-axis (see Fig. 17). The overlap regions among the grids can be seen
in the figure. The flow field was computed for the three-body configuration at

M, = 0.95, Rep = 2 x 10°%, and a = 0 deg. This flow was assumed to be turbulent from the
nose. The Baldwin-Lomax {(Ref. 15) algebraic turbulence model was used to simulate the
effects of turbulence.

Figure 20 shows axial distributions of C, at several azimuthal locations on the
lower body. Because of the 120-deg flow symmegry (Ref. 32) only one body need be
examined. The agreement between the calculation and experiment is generally good on the
forebody. The comparison becomes less favorable as separation is approached but again
becomes generally good over the afterpody. The data indicate that the interior flow
(i.e., within the "channel" formed by the bodies, e.qg., -60 < ¢ < 60 deg on the lower
body) is accelerated compared to the exterior flow. The computation predicts the in-
terior shock too far upstream and does a poor job of predicting the exterior separation/
shock interaction. Such behavior is not unexpected as the Baldwin and Lomax turbulence
model does not predict separated flows well, especially as the separation becomes mas-
sive. Modifications suggested by Degani and Schiff (Ref. 33) are being investigated to
determine if they will improve agreement in the separated regions.

Figure 21 shows computed particle paths near the model surface and experimental oil
pictures. Figures 2la and b compare "computed” and measured cil-flow patterns as seen
from above, and Figs. 21c and @ make a gsimilar comparison as seen from the bottom of the
configuration. 1In general, the basic features of the experimental oil flows are cap-
tured. Kaynak, et al. (Ref. 34) discuss the difficulty of comparing and interpreting
oil-flow patterns and particle streamlines. We will not endeavor to analyze the flow
patterns in more detail here.

The flowfield was alsc computed for the three-body configuration at a = 4 deg and
M_ = 0.95. These results are presented in Ref. 35 along with computational results for
an isolated body at M_ = 0.95 and o = 0 and 4 deg.

4.¢ DISCUSSION

Sections 2 and 3 described our experience with the chimera scheme. However, there
are several other aspects of its use that cannot be as clearly documented and several
questions that remain unanswered. Perhaps, the most significant change that was made
from the 2-D work reported by Benek, et al. (Ref. 9) was a change from the mixed 2nd/4th-
order accurate approximations of Pulliam and Steger (Ref. 18) to a consistently 2nd-
order approximation. Large oscillations in the solution with the mixed-order scheme oc-
curred when grid boundaries crossed high gradient regions. Switching to a 2nd-order
scheme has eliminated this problem.

Another guestion that commonly arises involves the interpolation at grid boundaries.
Is the boundary approximation conservative? Our experience indicates that the major
factor affecting accuracy at the boundaries is the resolution between the grids in the
neighborhood of the boundary. Wwhenever there is a "large" mismatch in resolution, con-
vergence slows and large oscillations in the solution are evident near the interface.
Should the mismatch occur where the interface crosses a high gradient region, the situa-
tion is exacerbated. A more detailad and systematic study of this aspect of domain de-
composition techniques is in order.

The chimera scheme was designed to function independently of the particular genera-
tion scheme used to construct subdomain grids. Our experience with grid generators in-
clude 2-D and 3-D elliptic codes, 3-D algebraic codes, and a hyperbolic code. The
chimera scheme has successfully combined subdomain grids from several grid generators and
many different topologies and has provided the basis for routine calculation of transonic
interference effects from tunnel walls and model support structure at the AEDC.

SUMMARY

We have described our experience with the chimera grid embedding scheme. The
method was applied to the computation of transonic wall interference with particular suc-
cess and is being used routinely for support to testing at the AEDC. Experience with the
viscous version is still being accumulated, but the potential to compute a wide range of
flows has been demonstrated. Component grids have been generated by several 2-D and 3-D
grid codes which employ algebraic and partial differential equations as generators. We
experijenced no difficulties combining grids constructed by the various methods into a
composite mesh.
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4.13 GRID GENERATION AROUND TRANSPORT AIRCRAFPT CONFIGURATIONS
USING A MULTI-BLOCK STRUCTURED COMPUTATIONAL DOMAIM

R. Radespiel

Deutache Forschungs- und Versuchsanstalt fiir
Luft- und Raumfahrt e.V.
Institut fir Entwurfsaerodynamik
D-3300 Braunschweig-Flughafen
F.R. Germany

A new grid generation code is described which is based on the multi-block approch.
Grid generation around three-dimensional configurations is divided into three major
parts, namely surface definition, surface grid generation and field grid generation.
Coons' patches are used to define the surfaces and their intersection lines. Surface
grids and field grids are generated using the numerical solution of an elliptic system.
An effective means for the control of the grid spacing has been developed which is based
on an iterative determination of the source terms in the elliptic system. The code is
used to generate grids around a wing-body combination and a high bypass nhacelle confi-
guratinn,

1. INTRODUCTION

Many codes for the computation of three-dimensional flows use rather simple griq
generation procedures, such as stacking two-dimensional grids. These codes cannot be
expected to resolve accurately regions of three-dimensional geometry, for example the
vicinity of the wing tip or complex intersections of aerodynamic surfaces.

Essentially three-dimensional generation methods can suffer from problems due to
overlapping of grid lines in the physical domain and may generate grids with discontinui-
ties of the metrics in the field as often occurs in the cage of algebraic generation
systems. Codes bagsed on differential equation systems require much more computing time
and often there are no means available for a direct control of the grid density every-
where.

We postulate that the first requirement of a 'good' grid generation method should be
user friendliness. The user should be able to cluster grid points in regions where he
expects the flow gradients to be high. The code should be robust, which means it should
be applicable to a wide range of configurations without changing the numerical parameters
of the method. Secondly the code should be at least one order of magnitude faster than
the flow solver under consideration. We believe no grid generation code would ever give
the optimal distribution of grid points with its first run. After visual inspection of
the grid the user will decide either to change the input of the grid generation code and
makes a new run of the program or to use the grid for flow computations. Thirdly the part
of the computer program, which depends on the specific configuration under consideration
should be as small as possible. This reguirement leads to the concept of generating block
structured grids as used in (1, 2, 3, 4].

The present report describes recent work to meet these requirements. First the prob~
lem of grid topologies around aircraft configurations is discussed in some detail. In
section 3 the surface equations which are used to define arbitrary, intersecting surfaces
are given according to Coons {5]. The generation of both two-dimensional surface grids
and three-dimensional field grids is based on the numerical solution of an elliptic
system as outlined in [6]. An effective means for the control of the grid point distribu-~
tion in the field has been developed which uses an iterative determination of the source
terms in the elliptic system. This procedure will be described in section 4. The computer
program is based on the multi-block approach. Therefore, the mayor part of the program
will be independent of the problem under consideration. An outline of the computational
procedure will be discussed in section 5. Finally, the results of the generation of grids
around a wing-body and a high bypass nacelle configuration are given.

2. GRID TOPOLOGIES FOR TRANSPORT AIRCRAFT CONFIGURATIONS

It is well known that there does not exist an optimal grid topology for arbitrary
aircraft configurations. Each aerodynamic component of an aircruft may have its own natu-~
ral grid structure and usually these natural structures of the components can not be
patched with each other. For a given configuration one has first to decide abou*t the
global grid topology. The global grid should be compatible with all local subgrids, which
are used for resolution of the individual components.

For the particular configuration of a transonic transport aircraft the following
main components have to be considered: Large aspect ratio, moderately swept wing, blunt
fuselage, moderately swept empennage, engine nacelle mounted on strut. If all these compo~
nents have to be integrated into the grid an H-type sectionwise global grid seems appro~
priate. Por H-sections one family of grid lines will approximately follow the streamlines
80 that the lifting surfaces can be represented as interior slits. In the spanwise
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direction the grid lines should enclose the wing forming an "0". Compared with an H-type
spanwise grid, an O-grid will save 25-30% of the grid points and thus computer time. In
conclusion, the global grid now has an H-O-structure with respect to the wing. The addi-
tional components of the aircraft can be integrated into the mesh as follows:

e The fuselage can be mapped directly into the global grid. The grid structure with re-
spect to the fuselage is then H-H. Another possibility is to embed a local 0-0 grid
around the fuselage into the global grid. This grid arrangement is sketched in
Figure 1. Compared to the first alternative the arrangement with the embedded subgrid
will save 40% of the grid points when generating grids for a numerical solution of the
Euler equations. For a numerical solution of the Navier Stokes equations the total
number of grid points may be reduced by 60%.

® The horizontal tailplane can be represented as an interior slit in both the global H-0
grid and the subgrid of the fuselage. If the resolution of these grids is not good
encugh in the region of the tailplane a local 0-0 subgrid can be embedded into the
slit. The same procedure can be followed in the case of the vertical tailplane.

® For the integration of the engine nacelle, a portion of the global grid below the wing
can be replaced by a polar subgrid, whose singularity is on the axis of the nacelle.
The resolution of the strut may give problems if it is highly swept. In this case it
should be advantageous to use additional singular grid points on the strut surface to
avoid highly skewed grid lines on it.

3. SURFACE DEFINITIOR

One of the basic requirements of a grid generator is to allow a complete mathemati-
cal description of all the aerodynamic surfaces under consideration. In practice, aerody-
namic surfaces are given by using cross sections; i.e., a fuselage is described by cross
sections along the body axis and a wing is given by airfoil sections in the spanwise
direction. The first step of the computational procedure is thus the generation of a
mathematical description of the surfaces which fits the input cross sections and provides
at least continuous derivatives up to first order. The description should contain the
intersection lines of the aerodynamic surfaces. A convenient method of surface definition
which meets these requirements uses Coons'patches [5]

Using the input cross sections any surface can be covered with a grid of patches. The
distribution of the cartesian coordinates over a single patch is considered now. For this
purpose two independent coordinates u, 0$ us 1 and w, 0s w < 1 can be defined ac or-
ding to Figure 2. Following Coons a surface equation can be derived which gives ooth
continuous coordinates and continuous slopes across the boundaries u = 0, u = 1, w = 0,
w = 1. Defining the boundary curves of the patch as cubic polynomials the surface
equation can be written as

k=tmaT (1)

where % = [x(u,w), y(u,w), z(u,w)] contains the components of the cartesian coordinates,

& = [u?, u?, u, 1] W= [wl, w? w, 1]

and M is a matrix containing the parametric derivatives of ¥ combined with blending func-
tions to provide continuity across the boundary curves. For each patch the elements of M
only need to be calculated once and stored.

Once the patches of all the surfaces have been defined, intersections of any two
surfaces can be calculated. A point lying on the intersection line of two patches must
satisfy equation (1) for each patch. Then, setting these equations equal, three non-line-
ar algebraic equations for the four parametric coordinates of the two patches are genera-
ted. If one of the parameters is fixed, i.e. percent line of the wing, the equations can
be solved to give the corresponding point on the intersection line.

In conclusion, all the aerodynamic surfaces are continuously described by dividing
them into a number of Coons' patches, which use two parametric surface coordinates u and
w. Hence, a unique transformation % = ¥(u, w) has been established for each patch. In
addition to the possibility of calculating intersections between any two surfaces, this
transformation can also be used for the generation of surface grids. This is described in
section 4. N

4. GRID GENERATION SYSTEM

At the present time the choice of a specific grid generation system seems to be
based more on the engineer's intention and his particular experiences than on established
theorems. In our case it is felt that an elliptic generation system offers the most fle-
xibility to treat complex three~dimensional geometries. In particular, for H-topologies,
is meems to be rather difficult to use algebraic generation equations to generate smooth
grids without any overlap of grid lines.
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For the numerical solution of an elliptic system in a three-dimensional computatio-
nal domain, the definition of the grid point distribution at the boundaries of the domain
is required. Hence, a three-dimensional field grid generation system and a two-dimen-
sional surface grid generation system have to be specified. Surface grids must be genera-
ted at the farfield boundaries of the computational domain and on the surface of the
aircraft configuration. The grids on the surface will in turn influence the field grid
clogse to the surface, where high flow gradients are expected. Hence, the generation of
proper surface grids is an important aspect of the total problem. In the following we
will first introduce the generation system for three-dimensional fields and then discuss
the surface grid generation system.

4.1 Generation System of FPield Grids

Thompson et al {6] have given an elliptic generation system

t 4+ o+ 2 =84 = (2)

for the curvilinear cquinakes ¥ = [g. n, C]T. Here J2 denotes the square of the Jacobian
and the elements of A = [#B.] are functions of the transformation coefficients. The
Laplace operator on the left hand side of system (2) will provide a smooth distribution
of the coordinates ? in physical space. Furthermore, it has beeen shown [7], that th$
system (2) exhibits an extremum principle, if the inhomogenucus functions P = [P, Q, R}
vanish, i.e. the generation system then guarantees a one-to-one mapping for boundary-con-
forming curvilinear systems on general closed boundaries. However, this condition with
respect to is not necessary to generate non-overlapping grids and, in practice, the
source terms P which are used to control spacing and orientation of grid line will have
to be large and change their sign within the field in order to generate suitable grids.
The determination of these terms will be discussed in section 4.3.

In order to obtain the location vector X = £(#) it is convenient to interchange .he
role of dependent and independent variables in eiuation (2), which gives a quasilinear
elliptic system for the cartesian positicn vector x:

> » » » + »> » »> »>
A(xgg + sz) + B(xnn + an) + C(xCC + Rxc) + 2(Dx§n + ExEc + Fxnt) = 0 (3)

The coefficients A to F are related to the transformation coefficients %., % and %, .
Equation (3) can be solved in the computational domain to yield the 1ocatio§ veltor % gt
each discrete value of Z. For this purpose a conventional successive line relaxation
method is currently used.

4.2 Generation System of Surface Grids

Surface grids are generated using two parametric coordinates. In the most simple
case the surface lies in a plane in physical space, i.e. z = const. In this case the
other two cartesian coordinates x and y can be used as parametric coordinates. A typical
application of this is the generation of a surface grid in the symmetry plane of a wing.
If a grid has to be generated on the surface of an aircraft configuration it is clear
that the parametric coordinates u and w of the Coons' patches from section 3 can be used.
For example, the parametric coordinates u and w on a fuselage may be defined as sketched
in Figure 3a. The problem is now, the generation new curvilinear coordinates £, n on this
surface (Plgure 3b) which conform to the intersection between fuselage and wing.

Thompson et al [6] have derived a general elliptic surface grid generation system
which takes into account the partial derivatives of the transformation ¥ = P(u, w), rela-
ting to curvature, skewness or stretching of the Coons' patches. Using this generation
system the surface grid will be virtually independent of the original definition of the
Coons' patches. In our particular case, generating a surface grid on an aircraft fuse-
lage, there are no problems associated with the metrics of the parametric coordinates. On
most of the fuselage surface the new curvilinear coordinates will follow the parametric
coordinates closely. Furthermore, the coq;dinates u and w of the Coons' patches and the
new curvilinear coordinates £ = [E, n will both have two singular points, one at the
nose of the fuselage and one at the tail.

In the present work the surface grids are therefore generated using simply the two-
dimensional version of system (2):

2
Euy *Eww = PJ A
2 (4)
+ = QJ B

Tau * Tew

in the parametric u-w domain. The source terms P and Q are used to control the spacing of
the surface grid. Their determination is given in section 4.3.
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4.3 Xterative Grid Control

The source terms B = £P, @, R} can be used to control spacing and orientation of the
curvilinear coordinates in phyaical space. A user of the grid generation code usually
wantg to cluster grid lines in regions where he expects the flow gradients to be high.
For example he may wish to specify a certain grid spacing close to the aerodynamic sur-~
face. As an alternative the user may choosc a particular plane in the computational do-
main for which a point distribution is to be prescribed. This certain plane may be a
boundary of the computational domain or it may be an interior plane, at which a desired
point distribution is to be specified. Thompson [6] has given a relatively simple esti-
mate of the source terms in order to achieve a desired point distribution. For example,
let n = const. be the plane under consideration. Assume that the coordinate line on which
n varies crosses that plane orthogonally and that the curvature of the coorainate line on
which n varies is zero. The source terms P and R then may be written

p=-§-§& . R--g-gs (s)

where s denotes the arc length distribution along the coordinates { and (. S5imilar ex-
pressions can be given for source terms on planes £ = const and { = const. Once the sour-
ce termse have been evaluated on certain planes they can be interpolated in the whole
region. Generally, the resulting grids will not exhibit the desired point distribution on
the planes which were initially used to evaluate equation (9), because both skewness and
curvature of the lines crossing those planes are not taken into account. The grid lines
will move toward convex boundaries and they will move away from concave boundaries. This
tendency is sketched in Fiqure 4 for the case of a C-grid around a highly cambered air-
foil. Thompson et al (8] have given expressions which take into account the curvature of
the boundaries of the computational domain. However, the curvature of the boundary will
not necessarily reflect the curvature of the grid lines in the field. Furthermore it may
be difficult to evaluate the curvature at boundaries of an H-type topology as shown in

Figure 5.

As both curvature and skewness of the grid lines come out as a part of the solution
and therefore cannot be calculated beforehand, an iterative determination of source terms
has been developed. In order to obtain a desired point distribution on certain planes of
the computational domain the source terms are adjusted throughout the whole solution
process. PFrom here on, these planes will be called target planes. On a target plane
n = const target values of the grid stretching (sg./s.), and (8z¢/8;)o can be calcula-
ted from the desired point distribution on that’ plahe. The iterdtive solution of the
elliptic system (5) ylelds new values of the coordinates after each iteration n. From
these new coordinates actual values of (s £/s§)n can be computed. The difference between
target values and actual values of the grid stretching can be used to adjust the source
terms on the target plane as follows:

s 8
s [[3] 0 (3] ]

To obtain a stable iteration scheme it was found necessary to add a damping term
such as the derivative of the difference between target values and actual values with
respect to the iteration number. The final iteration formula then reads:

Parl = By + o [[;és]n" [:—?] o]'ch [[;f;]n'[:%]n—l] N

Analogous expressions follow for the iterative determination of R. Once the source
terms P and R have been obtained on the target plane, they can be interpolated in the
entire domain and the solution algorithm can proceed to the next iteration. The converged
solution will yield a coordinate grid for which lsE /8.) = (8 5/s )o is valid on the
target plane and which is smooth in the entire domain. %n ihe c of’generation of two-
dimensional surface grids, the target planes reduce to target lines on which one source
term can be evaluated from the arc length distribution.

Values of the coefficients ¢,= 0.1 and cp= 0.2 have been determined empirically. It
has been found that the convergéhce behavior of the numerical solution with iterative
grid control is not very sensitive with respect to cpand Cep-

5. MULTI-BLOCK STRUCTURED COMPUTATIONAL PROCEDURE

In order to enable the treatment of complex configurations a multi-block structured
grid generation code has been developed. In the multi-block approach a complicated multi-
ply connected computational domain is split into a number of simply connected cubes. The
solution algorithm is completely independent of the specific configuration under conside-
ration. The definition of the information which is necessary to describe a general block
structured domain has been fixed in cooperation with DORNIER Company and SUPRENUM Company
and has already become a software standard {8]. This definition of the block structured
domain is given in the following subsection. Afterwards a brief outline of the computer
program is given. This subsection is illustrated by the results for a typical wing-body
combination.




5.1 Definition of Block Structured Domains

A single block is formed by a right-hand system of the computational coordinates
i=1,IL, j=1,JL, k=1,KL. The six block boundaries are numbered according to Figure Ja.
The connection of blocks to form general regions is completely arbitrary and does not
depend on the numbering of the blocks. The information necessary to define general re-
gions is stored as follows:

¢ Each block boundary can be divided into an arbitrary number of segments, which either
correspond to a segment of a neighbor block (inner cut) or are a‘parg of the outer
boundary of the computational domain. The dimension of the segments is fxxgd by a regu-
lar, non-equidistant segment grid on each block boundary. The segment grid is defined
by an integer number IJKL for each block boundary
1J Number of segments in first cyclic direction at the block boundary
KL Number of segments in second cyclic direction at the block boundary
and an integer array MNOPQR (0:ID) with ID$ MAX(IJ, KL) for each block boundary
MNO(I) Value of block coordinates in first cyclic direction at the segment grid
lines.
PQR(I) Value of block coordinates in second cyclic direction at the segment grid
lines.
The use of IJKL and MNOPQR is illustrated in Figure 7b.
® The neighbors of the blocks are defined using the integer numbers IJKLMN (ID, ID)
and OPQR (ID, ID) for each block boundary. IJKILMN is coded for each segment as
follows:

IJK Number of the neighbor block. For IJK = 0 the segment is a part of the boundary of
the computational domain.

L Number of the neighboring block boundary

MN Definition of the index orientation of the neighboring segment according to

Figure 7.

The integer array OPQR is coded for each segment as follows:
op Number of the neighboring segment in first cyclic direction of the segment grid.

QR Number of the neighboring segment in second cyclic direction of the segment
grid.

Using the integers IJKL, MNOPQR, IJKLMN, OPQR arbritrarily connected block structures
are completely described.

5.2 Qutline of the Grid Generation Code

The present grid generation code can be divided into three major parts, namely sur-
face definition, surface grid generation and field grid generation. The results of each
of the three mayor parts of the code are stored in a file. Therefore, the code can be run
step by step, which allows the user to check the results of each step before proceeding
to the next.

5.2.1 Surface Definition

The starting-point for the definition of the aerodynamic surfaces is the input of
discrete surface sections. These input sections are shown for a typical transport confi-
guration in Figure 8a. Cubic splines over arc length distributions are used to interpola-
te a smooth grid of Coons patches on the fuselage. On the wing cubic splines in the sec-
tionwise direction and linear interpolation between the input sections in the spanwise
direction are used. A smooth and closed grid around the wing tip is generated. For this
purpose a series of superellipses is applied to the planform and the thickness of the
wing in the region near the tip. The yrids of Coons' patches for both the wing and the
fuselage are shown in Figure 8b. The elements of M are calcu ated according to equation
(1) and stored for all the patches. Finally the values of u and w at the intersection of
wing and fuselage are calculated for fixed percent lines of the wing grid (see section
3). For each intersection point the system of three non-linear equations is solved by a
library secant method for simultanecus non-linear equations [9]. It was found to give
rapid convergence for all the configurations analysed to this point.
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5.2.2 Surface Grid Generation

In the present version of the program the surface grid generation step contains
those parts of the code which depend on the particular configuration under consideration.
In the future, however, it is intended to generate the surface grids interactively on a
work station. The choice of an appropriate grid topology for wing-body combinations has
been discugssed in section 2. Obviously surface grids have to be generated on the wing,
the body, the farfield boundaries, in the symmetry plane of the grid and on all the fic-
titious inner cuts between the blocks. There are upper and lower blocks for the global
H-0 grid around the wing and upper and lower blocks around the fuselage.- Note that gene-
ration of surface grids on fictitious inner cuts is necessary only to provide an initial
grid for the field grid generation step. However, sometimes it may be useful to fix the
coordinates at inner cuts. (See section 5.2.3).

Initially, algebraic grids are generated for all boundary segments of the three-di-
mensional domain. For any of these segments, the surface grid can be improved by solving
the elliptic system {4). In this case a two-dimensional counterpart to the logic for the
field blocks (see section 5.1) is provided automatically from the block structure of the
field grids. To control the grid spacing at the boundary segments, target lines may be
specified for each two-dimensional surface block (see section 4.3). The present code
provides two options to determine target values of (955/95)0 along a coordinate line on
which i varies:

e QOption INITIAL DISTRIBUTION
{sgg/8g)o is calculated from the arc length distribution of the algebraic grid

8.

= g 2=l 23 *+ 84

i+l
8i+l T 8i-1

® Option GEOMETRIC PROGRESSION

From a specified grid spacing at i=1l, As and the distance sy I8l the ratio r of suc-
cessive grid intervals is calculated, so that s - = As%r ~1)/{r-1). The finite
difference approximation of (SEE/SE)O is 2(r - 1)}%r + i)- It is constant along i.

Now the solutions of the two-~dimensional elliptic system can be calculated. All the
2-D grids are stored end-to-end in singly- dimensioned arrays in the main program. The
corresponding arrays of the subroutines are multiply-dimensioned with their size and
starting location passed through COMMON and arguement lists. Therefore, no I/0-work is
required when the algorithm passes from one block to the next. The improvements of grid
guality which can be obtained using iterative grid control are displayed in Figure 9.
Figure %9a shows the surface grid of a fuselage without any source terms. A surface grid
with the sources determined according to equation (5) is shown in Figure 9b. Iterative
grid control has been used for the surface grid of Figure 9c. The resolution of this grid
is much better in the leading edge and trailing edge regions where large gradients of the
flow are expected.

In the present example of a transport configuration elliptic grid generation is
performed on the fuselage surface, the symmetry plane and the upstream and downstream
farfield boundaries.

5.2.3 Pield Grid Generation

Once the block-structured domain has been defined and the surface grids have been
generated and stored (see section 5.2.2) grid generation proceeds in a manner independent
of the particular configuration.

To initiate the numerical solution of the three-dimensional elliptic system all the
surface grids of the boundary segments are collected from file. Then trilinear transfini-
te Lagrange interpolation is used to generate the initial grids in the interior of the
blocks. To control the grid spacing, target planes may be chosen for each three-dimensi-
onal field block (see section 4.3). On each of these target planes two source terms may
be specified which are determined from the distribution of arc length in the two coordi-
nate directions of the plane. For example, on a plane on which j = const the source terms
P and R are determined from the arc length distributions in the i~ and k-directions,
respectively. The present code provides three options to determine the target values of
the source terms. In the case of the source term P there are:

e Option INITIAL DISTRIBUTION PLANE
(955/35)0 is calculated from the arr length distribution of the initial grid
-2 %1 728 Y s
Si¢1 T Bi-1

e Option INITIAL DISTRIBUTION BOUNDARY
(s /sg)o is calculated from the arc length distribution of the initial grid at k=1 and
kﬂii afd is linearily interpolated for intermediate values of k.




® Option GEOMETRIC PROGRESSION A
From a specified grid spacing at i=l, As and the distance sy, ~ 8) t g‘ratlo of
successive grid intervals r is calculated, so that s - 8y = as{r**'-1)/(r-1). The
finite difference approximation of (s€€/s€)° is 2(r - 1}}%: + i).

wWhen specifying the source terms P, Q and R care must be taken that the sources are
not overspecified. Each source term must be specified using one family of target planes
only. For example, the sources P may not be specified using both target planes i=const
and j=const. Furthermore, care should be taken that the specified target values of the
source terms cre physical, which means one can expect a numerical solution of equation

(3) to exist which fulfille the target valuegs of the arc length distributions without

excegsive skewness or cross-over of grid lines.

Now the solutions of the three-dimensional elliptic system can be calculated. As in
the surface generation step singly-dimensioned arrays in the main program and multiply-
dimeasioned arrays in subroutines are used to store the grids. However, due to the limi-
ted amount of main memory of the Cray 1-S computer used in the present work, only one
field block is kept in the main memory at a time. At each iteration step of the solution
algorithm each block is read from disk {(BUFFER-IN}, the iteration is executed and the
block is written back to disk (BUFFER-OUT). The Record-Addressable READMS/WRITMS package
is used for the exchange of the grid points on fictitious inner cuts. The ratio between
I1/0 and CPU~time is about 3.

In order to reduce the computational expense of the grid generation method, succes-
sive grid refinement can be used in the field grid generation step. The solution of the
coarse grid is interpolated and used as input for the refined grid calculation. Using
this strategy, the iterative determination of the source terms, which can require several
hundred iterations, can be done mainly on the coarsest grid. The task of the iterations
on the finer grids is to smooth the intial interpolated grids, which only requires seve-
ral dozen iterations. The convergence of the field grid generation method may be affected
by the problem of cross-over of grid lines near singular points or lines of the grid. The
H-O-topolugy of the present global grid shows two parabolic singular lines emanating from
the wing tip. There is a natural tendency of the grid lines running around the singular
lines to move very close to these lines. Although the continuum equations (2) possess a
maximum principle under certain conditions this property does not %?ply to the discrete
equations. Furthermore the initial solution with respect to both and P may be so far
away from che final converged solution, that cross-over of grid lines without recovery
occurs near the singular lines even if a converged solution without cross-over does
exist. The cross-over problem has also been addressed by Weatherill et al [10]. In the
present work converged solutions for H-O-topologies have been obtained by

® generating a smooth surface grid on the last spanwise plane k=KL in the surface grid
generation step and then fixing the coordinates on this plane in the field grid genera-
tion step,

® solving the elliptic system first with the source terms in guasi-spanwise direction R=0
for some hundred iterations on the coarse grid and then introducing the complete itera-
tive grid control.

Clearly, the problem of grid cross-over near singular lines has not been solved
satisfactorily with the present work and will require future effort.

To demonstrate the capapilities of the present method, field grids around a typical
wing-body ccmbination have been generated using 92 x 40 x 12 cells in the global H-0 grid
around the winj and 76 x 24 x 4 cells in the local 0-0 grid around the body. The numeri-
cal solution of the elliptic system was obtained using one grid refinement. Several views
of sections of the final grid are shown in Figure 10. Both the wing and the fuselage are
well resolved.

As a second application a grid around an isolated axisymmetric nacelle has been
generated using the two dimensional part of the grid generation code only. I.. .his case
three blocks have been used to form an H-grid sectionwise and a polar struct: -¢ in cir-
cumferential direction. Figure 11 shows, that all components of the configu.ation are
well resolved.

6. CONCLUSIONS

A new grid generation code has been developed which is based on the multi-block
approach. Grid generation around complex three- dimensional configurations is divided
into three major parts, namely surface definition, surface grid generation and field grid
generation. Surface definition is done using Coons' patches. Surface grids and field
grids are generated using the numerical solution of an elliptic system. The elliptic
system provides smooth grids in the interior of the computational domain, even if the
distribution of grid poinls at the boundaries is not smooth. An effective means for the
control of the grid spacing in the field has been developed which uses an iterative de-
termination of the source terms in the elliptic system.
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The code has been used to generate a grid around a wing-body combination which is
typical for transport aircraft. As a further step towards the representation of complete
transport aircraft, a grid around an isolated nacelle has been generated. The grids show
a good resolution of the aerodynamic surfaces.
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a) Grid in symmetry plane and on body sucface b} Grid in spanwise section

Fig. 1: Grid topology for wing-body combination

Coons’ patch

Fig. 2: Definition of Coons’ patch

a) Distribution of the parametric coordinates u and w
on a fuselage

b) Curvilinear surface coordinates { and { on a fuselage

Fig. 3: Surface grid generation
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Spacing smaller
than specified

Spacing larger
than specified

Fig. 4: Influence of surface curvature
on grid spacing

a) Numbering of the block boundaries

% 9 6 i 2

IJKL = 0303

MNOPQR(0) = 002002
MNOPQR(1) = 006005
MNOPQR(2) = 00%007
MNOPQR(3) = 014011

b) Definition of segment grid at block
boundary i=1

Fig. 6: Definition of block boundaries

Fig.

Fig.

5: H-type grid around airfoil showing
discontinuity Of slope at the
leading edge
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a) Input sections for wing and fuselage

b) Grid of Coons' patches on wing and fuselage

Fig. B: Surface definition of the DFVLR-F4 Wing-Body
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a) Laplace grid on fuselage

Fig. 9: Surface grid generation for DFVLR-F4 Wing-Body
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b) Grid on fuselage with Bource terms evaluated
from equation ()
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c} Grid on fuselage with iterative grid control
using the options INITIAL DISTRIBUTION in
streamwise direction and GEOMETRIC PROGRESS 10N
in normal direction
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d) Final surface grid of wing and body

Fig. 9, continued




My
Il
o

%'”:V’”?ﬂ///z«/////zzxﬂl|\;\x\ \\\\\\§§§§\§§R\.
L\ | T

i

(

9
v
A

A

1

TR

LI
T

AN

-:.....:.'..:.._ —
LI e

N

N
'\‘\‘@&%




c) Spanwise grid around the fuselage upstream
of the wing

damati,

d) Spanwise grid at midchord station of the wing

Fig. 10: continued




-

.
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